Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models.
View Article and Find Full Text PDFImmunotherapeutic strategies are increasingly important in neuro-oncology, and the elucidation of escape mechanisms that lead to treatment resistance is crucial. We investigated the impact of immune pressure on the clonal dynamics and immune escape signature by comparing glioma growth in immunocompetent versus immunodeficient mice. Glioma-bearing WT and Pd-1-/- mice survived significantly longer than immunodeficient Pfp-/- Rag2-/- mice.
View Article and Find Full Text PDFImmunotherapeutic treatment strategies for glioblastoma (GBM) are under investigation in clinical trials. However, our understanding of the immune phenotype of GBM-infiltrating T cells (tumor-infiltrating lymphocytes; TILs) and changes during disease progression is limited. Deeper insight is urgently needed to therapeutically overcome tumor-induced immune exhaustion.
View Article and Find Full Text PDFIntratumoral heterogeneity has been identified as one of the strongest drivers of treatment resistance and tumor recurrence. Therefore, investigating the complex clonal architecture of tumors over time has become a major challenge in cancer research. We developed a new fluorescent "optical barcoding" technique that allows fast tracking, identification, and quantification of live cell clones in vitro and in vivo using flow cytometry (FC).
View Article and Find Full Text PDFBackground: The treatment efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors like erlotinib has not met expectations for glioblastoma therapy, even for EGFR-overexpressing tumors. We determined possible mechanisms of therapy resistance using the unique BS153 glioblastoma cell line, which has retained amplification of the egfr gene and expression of EGFR variant (v)III.
Methods: Functional effects of erlotinib, gefitinib, and cetuximab on BS153 proliferation, migration, and EGFR-dependent signal transduction were systematically compared in vitro.
Purpose: Despite the high incidence of epidermal growth factor receptor (EGFR) gene amplification and rearrangement in glioblastomas, no suitable cell line exists that preserves these alterations in vitro and is tumorigenic in immunocompromised mice. On the basis of previous observations that glioblastoma cells cultured with serum lose the EGFR amplification rapidly and that EGF can inhibit the growth of EGFR-amplified tumor cells, we hypothesized that serum-free and EGF-free culture conditions could promote maintenance of the EGFR amplification.
Experimental Design: Cells from EGFR-amplified glioblastomas were taken into culture using neural stem cell conditions with modifications, including varying oxygen concentrations and omission of routine EGF supplementation.
Glioblastomas contain stem-like cells that can be maintained in vitro using specific serum-free conditions. We investigated whether glioblastoma stem-like (GS) cell lines preserve the expression phenotype of human glioblastomas more closely than conventional glioma cell lines. Expression profiling revealed that a distinct subset of GS lines, which displayed a full stem-like phenotype (GSf), mirrored the expression signature of glioblastomas more closely than either other GS lines or cell lines grown in serum.
View Article and Find Full Text PDFMalignant gliomas are incurable because of their diffuse infiltration of the surrounding brain. The recepteur d'origine nantais (RON) receptor tyrosine kinase is highly expressed in several epithelial cancer types and mediates tumorigenic, pro-invasive as well as metastatic effects. Analyzing RON expression in human gliomas, we found that different splice variants with known oncogenic activity are expressed in glioblastomas (GBM).
View Article and Find Full Text PDFThe c-Met receptor and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly overexpressed in malignant gliomas. Signaling through c-Met as well as exposure to hypoxia can stimulate glioma cell migration and invasion. In several cancer cell types, hypoxia was shown to activate the c-met promoter, which contains hypoxia inducible factor-1 (HIF-1) binding sites.
View Article and Find Full Text PDFContactin is a cell surface adhesion molecule that is normally expressed by neurons and oligodendrocytes. Particularly high levels of contactin are present during brain development. Using subtractive cloning, we identified contactin transcripts as overexpressed in glioblastomas compared with normal brain.
View Article and Find Full Text PDFBackground: Only a minority of patients with malignant gliomas respond to continuous high-dose tamoxifen (TAM) treatment. Therefore a method to predict the efficiency of TAM-treatment would be desirable. Analogous to previous studies in breast cancer patients, we investigated whether the dynamics of TGF-beta2 plasma levels allow the prediction of response to TAM-treatment in glioblastoma patients as well.
View Article and Find Full Text PDFObjective: Because of the wide dissemination of malignant glioma cells by the time that malignant glioma is diagnosed, anti-invasive strategies that are designed to limit their further spread may be of little value unless mechanisms of the invasive cascade can be used to render invasive cells susceptible to cytoreductive treatments. We recently determined that elevated thromboxane synthase gene expression and enzymatic activity are associated with a highly migratory phenotype of glioma cells in vitro and that specific inhibitors of this enzyme block cell migration. Interference with this inherent phenotype of malignant gliomas also affects glioma cell proliferation and apoptosis.
View Article and Find Full Text PDF