Publications by authors named "Svenja Steinfelder"

Intestinal parasitic nematodes affect a quarter of the world's population, typically eliciting prominent effector Th2-driven host immune responses. As not all infected hosts develop protection against reinfection, our current understanding of nematode-induced memory Th2 responses remains limited. Here, we investigated the activation of memory Th2 cells and the mechanisms driving early recall responses to the enteric nematode in mice.

View Article and Find Full Text PDF

Considering their potent immunomodulatory properties, therapeutic applications of ova (TSO) are studied as potential alternative treatment of autoimmune disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), or inflammatory bowel disease (IBD). Clinical phase 1 and 2 studies have demonstrated TSO treatment to be safe and well tolerated in MS patients, however, they reported only modest clinical efficacy. We therefore addressed the cellular and humoral immune responses directed against parasite antigens in individual MS patients receiving controlled TSO treatment (2500 TSO p.

View Article and Find Full Text PDF

Currently, methods for monitoring changes of gut barrier integrity and the associated immune response via non-invasive means are limited. Therefore, we aimed to develop a novel non-invasive technique to investigate immunological host responses representing gut barrier changes in response to infection. We identified the mucous layer on feces from mice to be mainly composed of exfoliated intestinal epithelial cells.

View Article and Find Full Text PDF

Lymphatic filariasis (LF) is a parasitic infection, caused by three closely related nematodes, namely , , and . Previously, we have shown that lysate from microfilariae induces the expression of interleukin and programmed death-ligand on monocytes, which lead to inhibition of CD4 T-cell responses. In this study, we investigated associations of and programmed cell death pathway gene polymorphisms with clinical manifestation in LF.

View Article and Find Full Text PDF

Parasitic nematodes have evolved powerful immunomodulatory molecules to enable their survival in immunocompetent hosts by subverting immune responses and minimizing pathological processes. One filarial molecule known to counteract host immune responses by inducing IL-10 and regulatory macrophages in mice is filarial cystatin. During a patent filarial infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive.

View Article and Find Full Text PDF

Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode in mice previously infected with . Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies.

View Article and Find Full Text PDF

There is growing interest in studying host-pathogen interactions in human-relevant large animal models such as the pig. Despite the progress in developing immunological reagents for porcine T cell research, there is an urgent need to directly assess pathogen-specific T cells-an extremely rare population of cells, but of upmost importance in orchestrating the host immune response to a given pathogen. Here, we established that the activation marker CD154 (CD40L), known from human and mouse studies, identifies also porcine antigen-reactive CD4 T lymphocytes.

View Article and Find Full Text PDF

Immunity to intestinal nematodes requires CD4⁺ Th2-cell responses, including IL-4 and IL-13 production. Chronic infection with intestinal nematodes leads to downregulation of these responses, and few functional T helper (Th) 2 cells are detected in secondary lymphoid organs in the chronic phase or after abrogation of infection. Here, we show with a natural murine infection with Heligmosomoides polygyrus that highly functional memory Th2 cells persist in the lamina propria and in addition in the peritoneal cavity (PC) after abrogation of infection.

View Article and Find Full Text PDF

Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community.

View Article and Find Full Text PDF

Helminths have evolved numerous pathways to prevent their expulsion or elimination from the host to ensure long-term survival. During infection, they target numerous host cells, including macrophages, to induce an alternatively activated phenotype, which aids elimination of infection, tissue repair, and wound healing. Multiple animal-based studies have demonstrated a significant reduction or complete reversal of disease by helminth infection, treatment with helminth products, or helminth-modulated macrophages in models of allergy, autoimmunity, and sepsis.

View Article and Find Full Text PDF

Immunomodulation is a common feature of chronic helminth infections and mainly attributed to the secretion of bioactive molecules, which target and modify host immune cells. In this study, we show that the helminth immunomodulator AvCystatin, a cysteine protease inhibitor, induces a novel regulatory macrophage (Mreg; AvCystatin-Mreg), which is sufficient to mitigate major parameters of allergic airway inflammation and colitis in mice. A single adoptive transfer of AvCystatin-Mreg before allergen challenge suppressed allergen-specific IgE levels, the influx of eosinophils into the airways, local and systemic Th2 cytokine levels, and mucus production in lung bronchioles of mice, whereas increasing local and systemic IL-10 production by CD4(+) T cells.

View Article and Find Full Text PDF

Background: Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive.

Aim: To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses.

View Article and Find Full Text PDF

IL-21 promotes Th17 differentiation, and Th17 cells that upregulate T-bet, IFN-γ, and GM-CSF drive experimental autoimmune diseases in mice. Anti-IL-21 treatment of autoimmune patients is therefore a therapeutic option, but the role of IL-21 in human T cell differentiation is incompletely understood. IL-21 was produced at high levels by human CD4(+) central memory T cells, suggesting that it is associated with early T cell differentiation.

View Article and Find Full Text PDF

Dendritic cells (DC) have the unique capacities to induce primary T-cell responses. In mice, CD8α(+)DC are specialized to cross-prime CD8(+) T cells and produce interleukin-12 (IL-12) that promotes cytotoxicity. Human BDCA-3(+)DC share several relevant characteristics with CD8α(+)DC, but the capacities of human DC subsets to induce CD8(+) T-cell responses are incompletely understood.

View Article and Find Full Text PDF

Helminth parasites modulate the immune system by complex mechanisms to ensure persistence in the host. Released immunomodulatory parasite components lead to a beneficial environment for the parasite by targeting different host cells and in parallel to a modulation of unrelated inflammatory responses in the host, such as allergy. The aim of this study was to investigate the effect of the potent helminth immunomodulator, filarial cystatin, in a murine model of airway inflammation and hyperreactivity induced by a clinically relevant aeroallergen (timothy grass (Phleum pratense) pollen) and on the function of peripheral blood mononuclear cells (PBMCs) from timothy grass pollen allergic patients.

View Article and Find Full Text PDF

Helminths are master regulators of host immune responses utilising complex mechanisms to dampen host protective Th2-type responses and favour long-term persistence. Such evasion mechanisms ensure mutual survival of both the parasite and the host. In this paper, we present recent findings on the cells that are targeted by helminths and the molecules and mechanisms that are induced during infection.

View Article and Find Full Text PDF

CCR6 is a chemokine receptor expressed on Th17 cells and regulatory T cells that is induced by T-cell priming with certain cytokines, but how its expression and stability are regulated at the molecular level is largely unknown. Here, we identified and characterized a noncoding region of the human CCR6 locus that displayed unmethylated CpG motifs (differentially methylated region [DMR]) selectively in CCR6(+) lymphocytes. CCR6 expression on circulating CD4(+) T cells was stable on cytokine-induced proliferation but partially down-regulated on T-cell receptor stimulation.

View Article and Find Full Text PDF

Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10-producing memory T cells. Human CD4(+)CCR6(+) memory T cells contained comparable numbers of IL-17- and IL-10-producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)-beta. In normal human spleens, the majority of CCR6(+) memory T cells were in the close vicinity of CCR6(+) myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ.

View Article and Find Full Text PDF

We investigated cellular immune responses of mice infected with the apicomplexan parasite Eimeria falciformis in order to characterise protective immune mechanisms and effector functions. Adoptive transfer experiments with mesenterial lymph node cells (MLNC) from immune donor mice were performed, and the oocyst output monitored after challenge infection. Phenotypical analysis by fluorescence cytometry and T cell proliferation assay showed that already from day four post infection E.

View Article and Find Full Text PDF

Schistosoma mansoni eggs contain factors that trigger potent Th2 responses in vivo and condition mouse dendritic cells (DCs) to promote Th2 lymphocyte differentiation. Using an in vitro bystander polarization assay as the readout, we purified and identified the major Th2-inducing component from soluble egg extract (SEA) as the secreted T2 ribonuclease, omega-1. The Th2-promoting activity of omega-1 was found to be sensitive to ribonuclease inhibition and did not require MyD88/TRIF signaling in DCs.

View Article and Find Full Text PDF

Since the initial description of Th1 and Th2 subsets in the 1980s, there has been enormous progress in identifying the molecular events and the transcriptional factors that regulate Th differentiation in response to a specific stimulus (e.g. antigen dose, co-receptors, cytokines).

View Article and Find Full Text PDF

Immunity against Eimeria-infections is highly specific and it depends on cell-mediated effector mechanisms. Infections of BALB/c mice with 1,000 sporulated oocysts of Eimeria falciformis led to protection against challenge infections. Treatment with the anti-coccidium Toltrazuril, during primary infection, terminated the ongoing disease and did not interfere with the establishment of protective immunity against challenge infections.

View Article and Find Full Text PDF