Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing.
View Article and Find Full Text PDFTranslational experimental approaches that help us better trace Parkinson's disease (PD) pathophysiological mechanisms leading to new therapeutic targets are urgently needed. In this article, we review recent experimental and clinical studies addressing abnormal neuronal activity and pathological network oscillations, as well as their underlying mechanisms and modulation. Our aim is to enhance our knowledge about the progression of Parkinson's disease pathology and the timing of its symptom's manifestation.
View Article and Find Full Text PDFDeciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in β- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA.
View Article and Find Full Text PDF