Publications by authors named "Svenja Ipsen"

Purpose Of Review: This review provides an overview of the most recent robotic ultrasound systems that have contemporary emerged over the past five years, highlighting their status and future directions. The systems are categorized based on their level of robot autonomy (LORA).

Recent Findings: Teleoperating systems show the highest level of technical maturity.

View Article and Find Full Text PDF

Real-time volumetric (4D) ultrasound has shown high potential for diagnostic and therapy guidance tasks. One of the main drawbacks of ultrasound imaging to date is the reliance on manual probe positioning and the resulting user dependence. Robotic assistance could help overcome this issue and facilitate the acquisition of long-term image data to observe dynamic processesover time.

View Article and Find Full Text PDF

Ultrasound (US) guidance is a rapidly growing area in image-guided radiotherapy. For motion compensation, the therapy target needs to be visualized with the US probe to continuously determine its position and adapt for shifts. While US has obvious benefits such as real-time capability and proven safety, one of the main drawbacks to date is its user dependency - high quality results require long years of clinical experience.

View Article and Find Full Text PDF

Stereotactic arrhythmia radioablation (STAR) is an emerging treatment option for atrial fibrillation (AF). However, it faces possibly the most challenging motion compensation scenario: both respiratory and cardiac motion. Multi-leaf collimator (MLC) tracking is clinically used for lung cancer treatments but its capabilities with intracardiac targets is unknown.

View Article and Find Full Text PDF

Purpose: To describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could influence MRI tracking algorithm design.

View Article and Find Full Text PDF

Purpose: With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation.

View Article and Find Full Text PDF

Purpose: Robotic guided stereotactic radiosurgery has recently been investigated for the treatment of atrial fibrillation (AF). Before moving into human treatments, multiple implications for treatment planning given a potential target tracking approach have to be considered.

Materials & Methods: Theoretical AF radiosurgery treatment plans for twenty-four patients were generated for baseline comparison.

View Article and Find Full Text PDF