Fascioliasis, a zoonotic disease caused by liver flukes of the genus , poses significant health threats to both humans and livestock. While some infections remain asymptomatic, others can lead to fatal outcomes, particularly during the acute phase characterized by the migration of immature parasites causing severe liver damage. Through the combination of data acquired via high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) and nanohydrophilic interaction chromatography tandem mass spectrometry, we investigated glycosphingolipids (GSLs) in both adult and immature parasite stages as well as the host liver and bile duct to unravel the intricacies of the host-pathogen interplay and associated pathology.
View Article and Find Full Text PDFDiseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases-for example, the parasitic blood fluke infection schistosomiasis-are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola because of a single amino acid change within the target of PZQ, a transient receptor potential ion channel in the melastatin family (TRPM), in Fasciola species.
View Article and Find Full Text PDFDiseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases - for example, the parasitic blood fluke infection, schistosomiasis - are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus .
View Article and Find Full Text PDF