Publications by authors named "Svenja Godbersen"

Nonalcoholic steatohepatitis (NASH) is a leading cause for chronic liver diseases. Current therapeutic options are limited due to an incomplete mechanistic understanding of how steatosis transitions to NASH. Here we show that the TRIM21 E3 ubiquitin ligase is induced by the synergistic actions of proinflammatory TNF-α and fatty acids in livers of humans and mice with NASH.

View Article and Find Full Text PDF

Although dietary fructose is associated with an elevated risk for pancreatic cancer, the underlying mechanisms remain elusive. Here, we report that ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, is a driver of PDAC development. We demonstrate that fructose triggers KHK and induces fructolytic gene expression in mouse and human PDAC.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins.

View Article and Find Full Text PDF

System-wide cross-linking and immunoprecipitation (CLIP) approaches have unveiled regulatory mechanisms of RNA-binding proteins (RBPs) mainly in cultured cells due to limitations in the cross-linking efficiency of tissues. Here, we describe viP-CLIP (in vivo PAR-CLIP), a method capable of identifying RBP targets in mammalian tissues, thereby facilitating the functional analysis of RBP-regulatory networks in vivo. We applied viP-CLIP to mouse livers and identified Insig2 and ApoB as prominent TIAL1 target transcripts, indicating an important role of TIAL1 in cholesterol synthesis and secretion.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) modulate physiological responses by repressing the expression of gene networks. We found that global deletion of microRNA-7 (miR-7), the most enriched miRNA in the hypothalamus, causes obesity in mice. Targeted deletion of miR-7 in Single-minded homolog 1 (Sim1) neurons, a critical component of the hypothalamic melanocortin pathway, causes hyperphagia, obesity and increased linear growth, mirroring Sim1 and Melanocortin-4 receptor (MC4R) haplo-insufficiency in mice and humans.

View Article and Find Full Text PDF

Background & Aims: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood.

View Article and Find Full Text PDF

Objective: The miR-200-Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets.

View Article and Find Full Text PDF

The intestinal epithelium is a complex structure that integrates digestive, immunological, neuroendocrine, and regenerative functions. Epithelial homeostasis is maintained by a coordinated cross-talk of different epithelial cell types. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection.

View Article and Find Full Text PDF

Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice.

View Article and Find Full Text PDF

The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation.

View Article and Find Full Text PDF

The epithelial-to-mesenchymal transition (EMT) is an important mechanism for cancer progression and metastasis. Numerous in vitro and tumor-profiling studies point to the miR-200-Zeb1 axis as crucial in regulating this process, yet in vivo studies involving its regulation within a physiological context are lacking. Here, we show that miR-200 ablation in the Rip-Tag2 insulinoma mouse model induces beta-cell dedifferentiation, initiates an EMT expression program, and promotes tumor invasion.

View Article and Find Full Text PDF

Hippo signaling is a critical pathway that integrates extrinsic and intrinsic mechanical cues to regulate organ size. Despite its essential role in organogenesis, little is known about its role in cell fate specification and differentiation. Here, we unravel a novel and unexpected role of the Hippo pathway effector Taz () in controlling the size, shape and fate of a unique cell in the zebrafish ovary.

View Article and Find Full Text PDF