Publications by authors named "Svenja Engels"

Purpose: To obtain initial data on sentinel lymph node (SLN) visualisation by pre-operative magnetic resonance imaging (MRI) and intra-operative bimodal SLN identification using a new magnetic fluorescent hybrid tracer in prostate cancer (PCa) patients.

Methods: Ten patients at > 5% risk for lymph node (LN) invasion were included. The day before surgery, a magnetic fluorescent hybrid tracer consisting of superparamagnetic iron oxide nanoparticles (SPION) and indocyanine green was transrectally injected into the prostate.

View Article and Find Full Text PDF

In prostate cancer, sentinel lymph node dissection (sLND) offers a personalized procedure with staging ability which is at least equivalent to extended LND while inducing lower morbidity. A bimodal fluorescent-radioactive approach was introduced to improve sentinel LN (SLN) detection. We present the first in-human case series on exploring the use of a fluorescent-magnetic hybrid tracer in a radiation-free sLND procedure.

View Article and Find Full Text PDF

Purpose: Our study evaluated the diagnostic benefits of bilateral pelvic lymphadenectomy in prostate cancer patients with unilaterally positive prostate biopsy.

Methods: Our retrospective analysis included clinical, surgical, and histopathological data of 440 prostate cancer patients treated with radical prostatectomy and bilateral sentinel-guided and risk-adapted complementary extended pelvic lymphadenectomy at our hospital between 2015 and 2022. We performed multiparametric logistic regression analysis to identify the most relevant predictive factors for detecting lymph-node metastasis in this group of patients.

View Article and Find Full Text PDF

Lymph node (LN) management is critical for survival in patients with penile cancer. However, radical inguinal lymphadenectomy carries a high risk of postoperative complications such as lymphedema, lymphocele, wound infection, and skin necrosis. The European Association of Urology guidelines therefore recommend invasive LN staging by modified inguinal lymphadenectomy or dynamic sentinel node biopsy (DSNB) in clinically node-negative patients (cN0) with intermediate- and high-risk tumors (≥ T1G2).

View Article and Find Full Text PDF

Sentinel pelvic lymph node dissection (sPLND) enables the targeted removal of lymph nodes (LNs) bearing the highest metastasis risk. In prostate cancer (PCa), sPLND alone or combined with extended PLND (ePLND) reveals more LN metastases along with detecting sentinel LNs (SLNs) outside the conventional ePLND template. To overcome the disadvantages of radioisotope-guided sPLND in PCa treatment, magnetometer-guided sPLND applying superparamagnetic iron oxide nanoparticles as a tracer was established.

View Article and Find Full Text PDF

: In clinical routine, only fractions of lymph nodes (LNs) are examined histopathologically, often resulting in missed (micro-)metastases and incorrect staging of prostate cancer (PCa). One-step nucleic acid amplification (OSNA) analyzes the entire LN by detecting cytokeratin 19 (CK19) mRNA as a surrogate for LN metastases requiring less effort than conventional biomolecular techniques. We aimed to evaluate performance of OSNA in detecting sentinel LN (SLN) metastases in PCa.

View Article and Find Full Text PDF

Radioisotope-guided sentinel lymph node dissection (sLND) has shown high diagnostic reliability in prostate (PCa) and other cancers. To overcome the limitations of the radioactive tracers, magnetometer-guided sLND using superparamagnetic iron oxide nanoparticles (SPIONs) has been successfully used in PCa. This prospective study (SentiMag Pro II, DRKS00007671) determined the diagnostic accuracy of magnetometer-guided sLND in intermediate- and high-risk PCa.

View Article and Find Full Text PDF

Due to the high morbidity of extended lymph node dissection (eLND) and the low detection rate of limited lymph node dissection (LND), targeted sentinel lymph node dissection (sLND) was implemented in prostate cancer (PCa). Subsequently, nonradioactive sentinel lymph node (SLN) detection using magnetic resonance imaging (MRI) and a magnetometer after intraprostatic injection of superparamagnetic iron oxide nanoparticles (SPIONs) was successfully applied in PCa. To validate the reliability of this approach, considering the magnetic activity of SLNs or whether it is sufficient to dissect only the most active SLNs as shown in other tumor entities for radio-guided sLND, we analyzed magnetometer-guided sLND results in 218 high- and intermediate-risk PCa patients undergoing eLND as a reference standard.

View Article and Find Full Text PDF

In penile cancer, lymph node (LN) metastasis is the main known prognostic factor that affects survival. Inguinal sentinel LN (SLN) dissection (sLND) using radioactive marking is recommended by the European Association of Urology guidelines to evaluate the nodal status in clinically node-negative penile cancer (cN0; ≥pT1, G2). Dependence on radioisotopes limits the application of this procedure to small parts of the developed world, and imposes restrictions on hospital logistics.

View Article and Find Full Text PDF

: Accurate histopathological evaluation of lymph nodes (LNs) is essential for reliable staging in prostate cancer. In routine practice, conventional techniques only examine parts of the LN. Molecular nodal staging methods are limited by their high costs and extensive time requirement.

View Article and Find Full Text PDF

Purpose: Sentinel lymph node (LN) dissection (sLND) using a magnetometer and superpara-magnetic iron oxide nanoparticles (SPION) as a tracer was successfully applied in prostate cancer (PCa). The feasibility of sentinel LN (SLN) visualization on MRI after intraprostatic SPION injection has been reported. In the present study, results of preoperative MRI identification of SLNs and the outcome of subsequent intraoperative magnetometer-guided sLND following intraprostatic SPION injection were studied in intermediate- and high-risk PCa.

View Article and Find Full Text PDF

Even though previously described iron-containing structures in the upper beak of pigeons were almost certainly macrophages, not magnetosensitive neurons, behavioural and neurobiological evidence still supports the involvement of the ophthalmic branch of the trigeminal nerve (V1) in magnetoreception. In previous behavioural studies, inactivation of putative V1-associated magnetoreceptors involved either application of the surface anaesthetic lidocaine to the upper beak or sectioning of V1. Here, we compared the effects of lidocaine treatment, V1 ablations and sham ablations on magnetic field-driven neuronal activation in V1-recipient brain regions in European robins.

View Article and Find Full Text PDF

Purpose Of Review: Superparamagnetic iron oxide nanoparticles (SPIONs) are tested to identify sentinel lymph nodes (SLNs) to exploit the advantages of targeted pelvic SLN dissection (sPLND), while circumventing the disadvantages of established radioactive labeling. Here we review recent studies about sPLND in prostate cancer (PCa), including the first results of SLN detection using intraprostatic SPION-injection.

Recent Findings: A recent systematic literature review reveals that the diagnostic accuracy of sPLND is comparable with extended PLND (ePLND).

View Article and Find Full Text PDF

Sentinel lymph node dissection (sLND) using a magnetometer and superparamagnetic iron oxide nanoparticles (SPIONs) as a tracer was successfully applied in prostate cancer (PCa). Radioisotope-guided sLND combined with extended pelvic LND (ePLND) achieved better node removal, increasing the number of affected nodes or the detection of sentinel lymph nodes outside the established ePLND template. We determined the diagnostic value of additional magnetometer-guided sLND after intraprostatic SPION-injection in high-risk PCa.

View Article and Find Full Text PDF

To update the first sentinel nomogram predicting the presence of lymph node invasion (LNI) in prostate cancer patients undergoing sentinel lymph node dissection (sPLND), taking into account the percentage of positive cores. Analysis included 1,870 prostate cancer patients who underwent radioisotope-guided sPLND and retropubic radical prostatectomy. Prostate-specific antigen (PSA), clinical T category, primary and secondary biopsy Gleason grade, and percentage of positive cores were included in univariate and multivariate logistic regression models predicting LNI, and constituted the basis for the regression coefficient-based nomogram.

View Article and Find Full Text PDF

In prostate cancer, reliable information about the lymph node status is of great importance for accurate staging and the optimal planning of treatment. Despite recent advances in imaging, the histological detection of metastases, or pelvic lymphadenectomy (PLND), continues to be the most reliable method for lymph node staging in clinically localised prostate cancer, especially as this procedure enables the detection of small or micrometastases. Radioisotope-guided sentinel PLND (sPLND) demonstrates high sensitivity in the detection of lymph node metastases as well as low morbidity in prostate cancer because of the targeted removal of a relatively small number of lymph nodes.

View Article and Find Full Text PDF

Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth's magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein.

View Article and Find Full Text PDF

Magnetoreception remains one of the few unsolved mysteries in sensory biology. The upper beak, which is innervated by the ophthalmic branch of the trigeminal nerve (V1), has been suggested to contain magnetic sensors based on ferromagnetic structures. Recently, its existence in pigeons has been seriously challenged by studies suggesting that the previously described iron-accumulations are macrophages, not magnetosensitive nerve endings.

View Article and Find Full Text PDF

Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions.

View Article and Find Full Text PDF

Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins.

View Article and Find Full Text PDF

Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain.

View Article and Find Full Text PDF