Publications by authors named "Svenja Adrian"

Background: Patients with EGFR-mutated non-small-cell lung cancer (NSCLC) and MET amplification as a mechanism of resistance to first-line osimertinib have few treatment options. Here, we report the primary analysis of the phase 2 INSIGHT 2 study evaluating tepotinib, a highly selective MET inhibitor, combined with osimertinib in this population.

Methods: This open-label, phase 2 study was conducted at 179 academic centres and community clinics in 17 countries.

View Article and Find Full Text PDF

Tepotinib is a highly selective MET tyrosine kinase inhibitor (TKI) that has demonstrated robust and durable clinical activity in patients with MET exon 14 (METex14) skipping non-small-cell lung cancer (NSCLC). In the Phase II VISION study, patients received oral tepotinib 500 mg once daily. The primary endpoint was an objective response by an independent review committee (IRC) according to RECIST v1.

View Article and Find Full Text PDF

amplification amp), a mechanism of acquired resistance to EGFR tyrosine kinase inhibitors, occurs in up to 30% of patients with non-small-cell lung cancer (NSCLC) progressing on first-line osimertinib. Combining osimertinib with a MET inhibitor, such as tepotinib, an oral, highly selective, potent MET tyrosine kinase inhibitor, may overcome amp-driven resistance. INSIGHT 2 (NCT03940703), an international, open-label, multicenter phase II trial, assesses tepotinib plus osimertinib in patients with advanced/metastatic -mutant NSCLC and acquired resistance to first-line osimertinib and amp, determined centrally by fluorescence hybridization (gene copy number ≥5 and/or ≥2) at time of progression.

View Article and Find Full Text PDF

Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia.

View Article and Find Full Text PDF

Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The expression of the viral / oncogenes plays a key role for HPV-linked oncogenesis. It recently has been found that low oxygen concentrations ("hypoxia"), as present in sub-regions of HPV-positive cancers, strongly affect the interplay between the HPV oncogenes and their transformed host cell.

View Article and Find Full Text PDF

Aging is attended by a progressive decline in protein homeostasis (proteostasis), aggravating the risk for protein aggregation diseases. To understand the coordination between proteome imbalance and longevity, we addressed the mechanistic role of the quality-control ubiquitin ligase CHIP, which is a key regulator of proteostasis. We observed that CHIP deficiency leads to increased levels of the insulin receptor (INSR) and reduced lifespan of worms and flies.

View Article and Find Full Text PDF