To investigate relationships within the subfamily Telotylenchinae, more than 500 soil samples were collected from various natural and agricultural habitats in several localities of Iran. Individuals of seven known species, including Bitylenchus dubius, B. parvus, B.
View Article and Find Full Text PDFPotato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control.
View Article and Find Full Text PDFBackground: Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value.
View Article and Find Full Text PDFPotato cyst nematodes (PCNs), the umbrella term for and , coevolved with their Solanaceous hosts in the Andean Mountain region. From there, PCN proliferated worldwide to virtually all potato production areas. PCN is a major factor limiting the potato production in Indonesia.
View Article and Find Full Text PDFOutside its native range, the invasive plant species giant goldenrod () has been shown to increase belowground fungal biomass. This non-obvious effect is poorly characterized; we don't know whether it is plant developmental stage-dependent, which fractions of the fungal community are affected, and whether it is reflected in the next trophic level. To address these questions, fungal assemblages in soil samples collected from invaded and uninvaded plots in two soil types were compared.
View Article and Find Full Text PDFPlants manipulate their rhizosphere community in a species and even a plant life stage-dependent manner. In essence plants select, promote and (de)activate directly the local bacterial and fungal community, and indirectly representatives of the next trophic level, protists and nematodes. By doing so, plants enlarge the pool of bioavailable nutrients and maximize local disease suppressiveness within the boundaries set by the nature of the local microbial community.
View Article and Find Full Text PDFAnthropogenic modification of soil systems has diverse impacts on food web interactions and ecosystem functioning. To understand the positive, neutral or adverse effects of agricultural practices on the associations of community members of soil microbes and microfaunal biomes, we characterized the effects of different fertilization types (organic, inorganic and a combination of organic and inorganic) on the food web active communities in the bulk soil and rhizosphere compartments in field conditions. We examined the influence of fertilization on (i) individual groups (bacteria, protozoa and fungi as microbe representatives and metazoans as microfauna representatives) and (ii) inter-kingdom interactions (focusing on the interactions between bacteria and eukaryotic groups) both neglecting and considering environmental factors in our analysis in combination with the microbial compositional data.
View Article and Find Full Text PDFConventional agricultural production systems, typified by large inputs of mineral fertilizers and pesticides, reduce soil biodiversity and may negatively affect ecosystem services such as carbon fixation, nutrient cycling and disease suppressiveness. Organic soil management is thought to contribute to a more diverse and stable soil food web, but data detailing this effect are sparse and fragmented. We set out to map both the resident (rDNA) and the active (rRNA) fractions of bacterial, fungal, protozoan and metazoan communities under various soil management regimes in two distinct soil types with barley as the main crop.
View Article and Find Full Text PDFPlant parasitism has arisen time and again in multiple phyla, including bacteria, fungi, insects and nematodes. In most of these organismal groups, the overwhelming diversity hampers a robust reconstruction of the origins and diversification patterns of this trophic lifestyle. Being a moderately diversified phylum with ≈ 4,100 plant parasites (15% of total biodiversity) subdivided over four independent lineages, nematodes constitute a major organismal group for which the genesis of plant parasitism could be mapped.
View Article and Find Full Text PDFSome nematologists recently placed the genus Pratylenchoides, ("Lesion Nematode-like") in the family Merliniidae. To investigate Pratylenchoides species diversity and their relationships with other Merliniidae genera, specimens were collected from various habitats in the northern and northwestern provinces of Iran. The morphological and molecular study yielded three species of the genus Pratylenchoides, including P.
View Article and Find Full Text PDFBackground: Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events.
View Article and Find Full Text PDFSoils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems.
View Article and Find Full Text PDFFoliar nematodes, plant-parasitic representatives of the genus Aphelenchoides, constitute a minority in a group dominated by fungivorous species. Distinction between (mostly harmless) fungal feeding Aphelenchoides species and high impact plant parasites such as A. besseyi, A.
View Article and Find Full Text PDFPotato cyst nematodes (PCNs) are quarantine organisms, and they belong to the economically most relevant pathogens of potato worldwide. Methodologies to assess the viability of their cysts, which can contain 200 to 500 eggs protected by the hardened cuticle of a dead female, are either time and labor intensive or lack robustness. We present a robust and cost-efficient viability assay based on loss of membrane integrity upon death.
View Article and Find Full Text PDFIndigenous communities of soil-resident nematodes have a high potential for soil health assessment as nematodes are diverse, abundant, trophically heterogeneous and easily extractable from soil. The conserved morphology of nematodes is the main operational reason for their under-exploitation as soil health indicators, and a user-friendly biosensor system should preferably be based on nonmorphological traits. More than 80% of the most environmental stress-sensitive nematode families belong to the orders Mononchida and Dorylaimida.
View Article and Find Full Text PDFInference of evolutionary relationships between nematodes is severely hampered by their conserved morphology, the high frequency of homoplasy, and the scarcity of phylum-wide molecular data. To study the origin of nematode radiation and to unravel the phylogenetic relationships between distantly related species, 339 nearly full-length small-subunit rDNA sequences were analyzed from a diverse range of nematodes. Bayesian inference revealed a backbone comprising 12 consecutive dichotomies that subdivided the phylum Nematoda into 12 clades.
View Article and Find Full Text PDF