In this work, the preparation of new S-adenosyl-l-methionine (SAM) analogues for sequence specific DNA labeling is evaluated. These non-natural analogues, comprising cysteine rather than the natural homolog, were obtained in near quantitative conversions from readily available starting materials without relying on using an excess amount of labor intensive molecules. The synthetic strategy was used to generate fluorescent cofactors, with colours spanning the whole visible spectrum, and their applicability in methyltransferase based optical mapping is shown.
View Article and Find Full Text PDFA novel π-conjugated triad and a polymer incorporating indolo[3,2-b]-carbazole (ICZ) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) were synthesized via a Sonogashira coupling. Compared to the parent BODIPY the absorption and fluorescence spectrum were for both compounds broader and redshifted. The redshift of the fluorescence and the decrease of the fluorescence quantum yield and decay time upon increasing solvent polarity were attributed to the formation of a partial charge-transfer state.
View Article and Find Full Text PDFA new synthetic pathway towards 2,8-difunctionalised indolo[3,2-b]carbazoles was investigated. The presented method offers a short and high yielding route towards 2,8-dibromo-5,11-dihexyl-6,12-diphenyl-indolo[3,2-b]carbazole. It is demonstrated that the latter compound is a versatile building block, enabling the synthesis of a number of previously unreported 5,11-dialkyl-6,12-diphenyl-indolo[3,2-b]carbazoles in moderate to good yields, using Suzuki and Sonogashira cross-coupling reaction.
View Article and Find Full Text PDFA new colorimetric and NIR fluorescent chemosensor (1) for Cu(2+) based on BODIPY is reported, displaying a highly sensitive and selective fluorescent enhancement with Cu(2+) among various metal ions, upon excitation at 620 nm in CH(3)CN.
View Article and Find Full Text PDFA facile and general two-step method towards 6,12-diaryl-5,11-dihydroindolo[3,2-b]carbazoles has been developed. Hydroiodic acid was an efficient catalyst for the condensation of indole and aromatic aldehydes, and iodine was used as an oxidation reagent to afford symmetrical 6,12-diaryl-5,11-dihydroindolo[3,2-b]carbazoles in moderate to good overall yields.
View Article and Find Full Text PDF