Publications by authors named "Sven Van Bael"

The nematode Caenorhabditis elegans lends itself as an excellent model organism for peptidomics studies. Its ease of cultivation and quick generation time make it suitable for high-throughput studies. The nervous system, with its 302 neurons, is probably the best-known and studied endocrine tissue.

View Article and Find Full Text PDF

Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available.

View Article and Find Full Text PDF

Many anthelmintics target the neuromuscular system, in particular by interfering with signaling mediated by classical neurotransmitters. Although peptidergic signaling has been proposed as a novel target for anthelmintics, current knowledge of the neuropeptide complement of many helminth groups is still limited, especially for parasitic flatworms (cestodes, trematodes, and monogeneans). In this work, we have characterized the neuropeptide complement of the model cestode Hymenolepis microstoma.

View Article and Find Full Text PDF

Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Neuropeptides are diverse signaling molecules that play a role in various physiological processes, and studying them in nematodes allows for investigation of biosynthesis without affecting viability.
  • Research using mass spectrometry has focused on the impact of certain enzyme mutations on neuropeptide precursors, yet the enzymes for the final amidation step were not fully characterized.
  • Findings reveal that double mutants lacking key amidation enzymes show altered neuropeptide profiles and reduced offspring, suggesting that amidated peptides are essential for reproduction and that redundant mechanisms for amidation exist.
View Article and Find Full Text PDF

The nematode Caenorhabditis elegans lends itself as an excellent model organism for peptidomics studies. Its ease of cultivation and quick generation time make it suitable for high-throughput studies. Adult hermaphrodites contain 959 somatic nuclei that are ordered in defined, differentiated tissues.

View Article and Find Full Text PDF

Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications.

View Article and Find Full Text PDF