Publications by authors named "Sven Sagasser"

Cardiomyocytes undergo considerable changes in cell shape. These can be due to hemodynamic constraints, including changes in preload and afterload conditions, or to mutations in genes important for cardiac function. These changes instigate significant changes in cellular architecture and lead to the addition of sarcomeres, at the same time or at a later stage.

View Article and Find Full Text PDF

The malaria parasite has a complex lifecycle, including several events of differentiation and stage progression, while actively evading immunity in both its mosquito and human hosts. Important parasite gene expression and regulation during these events remain hidden in rare populations of cells. Here, we combine a capillary-based platform for cell isolation with single-cell RNA-sequencing to transcriptionally profile 165 single infected red blood cells (iRBCs) during the intra-erythrocytic developmental cycle (IDC).

View Article and Find Full Text PDF

Identifying transcriptional changes during embryogenesis is of crucial importance for unravelling evolutionary, molecular and cellular mechanisms that underpin patterning and morphogenesis. However, comparative studies focusing on early/embryonic stages during insect development are limited to a few taxa. Drosophila melanogaster is the paradigm for insect development, whereas comparative transcriptomic studies of embryonic stages of hemimetabolous insects are completely lacking.

View Article and Find Full Text PDF

Massively parallel DNA sequencing of thousands of samples in a single machine-run is now possible, but the preparation of the individual sequencing libraries is expensive and time-consuming. Tagmentation-based library construction, using the Tn5 transposase, is efficient for generating sequencing libraries but currently relies on undisclosed reagents, which severely limits development of novel applications and the execution of large-scale projects. Here, we present simple and robust procedures for Tn5 transposase production and optimized reaction conditions for tagmentation-based sequencing library construction.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging methods for quantifying gene expression in single cells can reveal important cell-to-cell variability insights.
  • Different high-throughput single-cell RNA-seq techniques have been developed, each with unique advantages in coverage, sensitivity, and multiplexing.
  • The Smart-seq2 protocol enhances transcriptome analysis by generating full-length cDNA libraries and can be completed in about 2 days, though it has some limitations like lacking strand specificity and the inability to detect nonpolyadenylated RNA.
View Article and Find Full Text PDF

Single-cell gene expression analyses hold promise for characterizing cellular heterogeneity, but current methods compromise on either the coverage, the sensitivity or the throughput. Here, we introduce Smart-seq2 with improved reverse transcription, template switching and preamplification to increase both yield and length of cDNA libraries generated from individual cells. Smart-seq2 transcriptome libraries have improved detection, coverage, bias and accuracy compared to Smart-seq libraries and are generated with off-the-shelf reagents at lower cost.

View Article and Find Full Text PDF

Previous studies demonstrated that layer strain domestic chicks bred for egg production can orient using directional cues from the magnetic field; here we report that chicks from a broiler strain bred for meat production do not use magnetic cues for orientation. We imprinted both strains of chicken on a red ball and subsequently trained them in a featureless testing arena. Between rewarded trials in the geomagnetic field, we inserted unrewarded tests under the following conditions: (1) in the geomagnetic field, (2) in a magnetic field with North shifted by 90 degrees and (3) in a magnetic field with the inclination inverted.

View Article and Find Full Text PDF

Mitochondrial genomes of multicellular animals are typically 15- to 24-kb circular molecules that encode a nearly identical set of 12-14 proteins for oxidative phosphorylation and 24-25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). These genomes lack significant intragenic spacers and are generally without introns. Here, we report the complete mitochondrial genome sequence of the placozoan Trichoplax adhaerens, a metazoan with the simplest known body plan of any animal, possessing no organs, no basal membrane, and only four different somatic cell types.

View Article and Find Full Text PDF

Pax genes play key regulatory roles in embryonic and sensory organ development in metazoans but their evolution and ancestral functions remain widely unresolved. We have isolated a Pax gene from Placozoa, beside Porifera the only metazoan phylum that completely lacks nerve and sensory cells or organs. These simplest known metazoans also lack any kind of symmetry, organs, extracellular matrix, basal lamina, muscle cells, and main body axis.

View Article and Find Full Text PDF

The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range.

View Article and Find Full Text PDF

Hox and ParaHox genes are implicated in axial patterning of cnidarians and bilaterians, and are thought to have originated by tandem duplication of a single "ProtoHox" gene followed by duplication of the resultant gene cluster. It is unclear what the ancestral role of Hox/ParaHox genes was before the divergence of Cnidaria and Bilateria, or what roles the postulated ProtoHox gene(s) played. Here we describe the full coding region, spatial expression and function of Trox-2, the single Hox/ParaHox-type gene identified in Trichoplax adhaerens (phylum Placozoa) and either a candidate ProtoHox or a ParaHox gene.

View Article and Find Full Text PDF