The depths of the North Atlantic Ocean host a species-rich fauna providing heterogeneous habitats from thermal vent fields to cold-water coral reefs. With the increasing threat of destruction of deep-sea habitats due to human impacts, such as demersal fishing and the beginning of deep-sea mining, an analysis of the diversity and distribution of species is crucial for conservation efforts. Brittle stars occur in high biomasses, contributing to the biodiversity of the seafloor.
View Article and Find Full Text PDFProteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes.
View Article and Find Full Text PDFWe analysed the robustness of species identification based on proteomic composition to data processing and intraspecific variability, specificity and sensitivity of species-markers as well as discriminatory power of proteomic fingerprinting and its sensitivity to phylogenetic distance. Our analysis is based on MALDI-TOF MS (matrix-assisted laser desorption ionization time of flight mass spectrometry) data from 32 marine copepod species coming from 13 regions (North and Central Atlantic and adjacent seas). A random forest (RF) model correctly classified all specimens to the species level with only small sensitivity to data processing, demonstrating the strong robustness of the method.
View Article and Find Full Text PDFSpecies identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1-C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone.
View Article and Find Full Text PDFThe crustacean marine isopod species Haploniscus bicuspis (Sars, 1877) shows circum-Icelandic distribution in a wide range of environmental conditions and along well-known geographic barriers, such as the Greenland-Iceland-Faroe (GIF) Ridge. We wanted to explore population genetics, phylogeography and cryptic speciation as well as investigate whether previously described, but unaccepted subspecies have any merit. Using the same set of specimens, we combined mitochondrial COI sequences, thousands of nuclear loci (ddRAD), and proteomic profiles, plus selected morphological characters using confocal laser scanning microscopy (CLSM).
View Article and Find Full Text PDFAccurate and reliable biodiversity estimates of marine zooplankton are a prerequisite to understand how changes in diversity can affect whole ecosystems. Species identification in the deep sea is significantly impeded by high numbers of new species and decreasing numbers of taxonomic experts, hampering any assessment of biodiversity. We used in parallel morphological, genetic, and proteomic characteristics of specimens of calanoid copepods from the abyssal South Atlantic to test if proteomic fingerprinting can accelerate estimating biodiversity.
View Article and Find Full Text PDF