Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces.
View Article and Find Full Text PDFMolecular transition metal chromophores play a central role in light harvesting and energy conversion. Recently, earth-abundant transition-metal-based chromophores have begun to challenge the dominance of platinum group metal complexes in this area. However, the development of new chromophores with optimized photophysical properties is still limited by a lack of synthetic methods, especially with respect to heteroleptic complexes with functional ligands.
View Article and Find Full Text PDFA nitrogen K-edge x-ray absorption near-edge structure (XANES) survey is presented for tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (tpphz)-bridged bimetallic assemblies that couple chromophore and catalyst transition metal complexes for light driven catalysis, as well as their individual molecular constituents. We demonstrate the high N site sensitivity of the N pre-edge XANES features, which are energetically well-separated for the phenazine bridge N atoms and for the individual metal-bound N atoms of the inner coordination sphere ligands. By comparison with the time-dependent density functional theory calculated spectra, we determine the origins of these distinguishable spectral features.
View Article and Find Full Text PDFThe front cover artwork is provided by the Institute of Analytical and Bioanalytical Chemistry and the Institute of Inorganic Chemistry I at Ulm University within the Collaborative Research Center TRR 234 CataLight. The image shows an algebraic approach to generically calculate and predict the turnover number (TON) and the endpoint of photocatalytic hydrogen gas evolution experiments. Read the full text of the Research Article at 10.
View Article and Find Full Text PDFSoft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported.
View Article and Find Full Text PDFPhotocatalysis is a contemporary research field given that the world's fossil energy resources including coal, mineral oil and natural gas are finite. The vast variety of photocatalytic systems demands for standardized protocols facilitating an objective comparison. While there are commonly accepted performance indicators such as the turnover number (TON) that are usually reported, to date there is no unified concept for the determination of TONs and the endpoint of the reaction during continuous measurements.
View Article and Find Full Text PDFBased on quantum chemical calculations, we predict strong solvatochromism in a light-driven molecular photocatalyst for hydrogen generation, that is we show that the electronic and optical properties of the photocatalyst strongly depend on the solvent it is dissolved in. Our calculations in particular indicate a solvent-dependent relocation of the highest occupied molecular orbital (HOMO). Ground-state density functional theory and linear response time-dependent density functional theory calculations were applied in order to investigate the influence of implicit solvents on the structural, electronic and optical properties of a molecular photocatalyst.
View Article and Find Full Text PDFBackground: Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics.
View Article and Find Full Text PDFCurrently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms.
View Article and Find Full Text PDFUnderstanding the factors that determine the luminescence lifetime of transition metal compounds is key for applications in photocatalysis and photodynamic therapy. Here we show that for (bpy = 2,2'-bipyridine), the generally accepted idea that emission lifetimes can be controlled optimizing the energy barrier from the emissive triplet metal-to-ligand charge-transfer ( MLCT) state to the thermally-activated triplet metal-centered ( MC) state or the energy gap between both states is a misconception. Further, we demonstrate that considering a single relaxation pathway determined from the minimum that is lowest in energy leads to wrong temperature-dependent emission lifetimes predictions.
View Article and Find Full Text PDFRhenium(I) complexes of type [Re(CO)(NN)Cl] (NN = α-diimine) with MLCT absorption in the orange-red region of the visible spectrum have been synthesized and fully characterized, including single crystal X-ray diffraction on two complexes. The strong bathochromic shift of MLCT absorption was achieved through extension of the π-system of the electron-poor bidiazine ligand 4,4'-bipyrimidine by the addition of fused phenyl rings, resulting in 4,4'-biquinazoline. Furthermore, upon anionic cyclization of the twisted bidiazine, a new 4N-doped perylene ligand, namely, 1,3,10,12-tetraazaperylene, was obtained.
View Article and Find Full Text PDFA review. In recent decades, mimicking natural photosynthesis by artificial photocatalysis represented a major research direction with the ultimate goal of reducing fossil fuel consumption through efficient solar energy harvesting. To transfer molecular photocatalysis from the lab scale to an industrially relevant process, it is important to overcome instability problems of the catalysts during light-driven operation.
View Article and Find Full Text PDFThe continuous repair of subunits of the photosynthetic apparatus is a key factor determining the overall efficiency of biological photosynthesis. Recent concepts for repairing artificial photocatalysts and catalytically active materials within the realm of solar fuel formation show great potential in reshaping the research directions within this field. This perspective describes the latest advances, concepts, and mechanisms in the field of catalyst repair and catalyst self-healing and provides an outlook on which additional steps need to be taken to bring artificial photosynthetic systems closer to real-life applications.
View Article and Find Full Text PDFCLICK-chemistry has become a universal route to covalently link organic molecules functionalized with azides and alkynes, respectively. Here, we report how CLICK-chemistry can be used to attach oligoaromatic organic moieties to Dawson-type polyoxometalates. In step one, the lacunary Dawson anion [α -P W O ] is functionalized with phosphonate anchors featuring peripheral azide groups.
View Article and Find Full Text PDFNear-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e.
View Article and Find Full Text PDFHerein, the synthesis in conjunction with the structural, electrochemical, and photophysical characterization of a 5,5'-bisphenanthroline (phenphen) linked heterodinuclear RuPt complex (Ru(phenphen)Pt) and its light-driven hydrogen formation activity are reported. A single crystal X-ray diffraction (SC-XRD) analysis identified a perpendicular orientation of the two directly linked 1,10-phenanthroline moieties. The disruption of π-conjugation blocks intramolecular electron transfer as evidenced by a comparative time-resolved optical spectroscopy study of Ru(phenphen)Pt and the reference complexes Ru(phenphen) and Ru(phenphen)Ru.
View Article and Find Full Text PDFThe ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center (Rh phenPer).
View Article and Find Full Text PDFThe supramolecular dimerization of a ruthenium polypyridyl precursor of a well-developed family of hydrogen-evolving photocatalysts via π-π interactions of the polyheteroaromatic bridging ligand was quantified with concentration-dependent H-NMR spectroscopy. The data sets were analyzed with different calculation and fit methods. A comparison between the results of direct calculation and linear and nonlinear approaches showed that the application of a global nonlinear fit procedure yields the best results.
View Article and Find Full Text PDFThe synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy) ] (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations.
View Article and Find Full Text PDFLight-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment.
View Article and Find Full Text PDFUnequivocal assignment of rate-limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy)Ru-BL-Rh(Cp*)Cl] photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we are able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl-2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the Rh center but rather the rate at which a two-fold reduced Rh species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD.
View Article and Find Full Text PDFTo optimize light-driven catalytic processes, light-mediated multi-electron transfer dynamics in molecular dyads need to be studied and correlated with structural changes focusing on the catalytically active metastable intermediates. Here, spectro-electrochemistry has been employed to investigate the structure-dependent photoelectron transfer kinetics in catalytically active intermediates of two Ru-Rh catalysts for light-driven NAD reduction. The excited-state reactivity of short-lived intermediates was studied along different photoreaction pathways by resonance Raman and time-resolved transient absorption spectro-electrochemistry with sub-picosecond time resolution under operando conditions.
View Article and Find Full Text PDFThis work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogeneous three-component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor.
View Article and Find Full Text PDF