Publications by authors named "Sven Paufler"

The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction.

View Article and Find Full Text PDF

In the present study, we investigated whether a non-invasive metabolic heat flux analysis could serve the determination of the functional traits in free-living saprotrophic decomposer fungi and aid the prediction of fungal influences on ecosystem processes. For this, seven fungi, including ascomycete, basidiomycete, and zygomycete species, were investigated in a standardised laboratory environment, employing wheat straw as a globally relevant lignocellulosic substrate. Our study demonstrates that biocalorimetry can be employed successfully to determine growth-related fungal activity parameters, such as apparent maximum growth rates (), cultivation times until the observable onset of fungal growth at (), quotients formed from the and (herein referred to as competitive growth potential, ), and heat yield coefficients (), the latter indicating the degree of resource investment into fungal biomass versus other functional attributes.

View Article and Find Full Text PDF

The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S.

View Article and Find Full Text PDF

One key parameter for assessing the CO fixation in aquatic ecosystems but also for the productivity of photobioreactors is the energy conversion efficiency (PE) by the photosynthetic apparatus. PE strictly depends on a range of different fluctuating environmental conditions and is therefore highly variable. PE is the result of complex metabolic control.

View Article and Find Full Text PDF

Solid-state fermentation (SSF) technology has been rapidly developed for the past 10 years as a production platform for secondary metabolites, biofuels, food, and pharmaceuticals. Yet, the main drawback of SSF is the local temperature rise of up to 20 K, which potentially reduces the strain activity and inactivates heat sensible products. Due to the low heat capacity and thermal conductivity of mixtures of air with plant material, in comparison to aqueous suspensions in submerged fermentations, heat from metabolic processes is less efficiently dissipated.

View Article and Find Full Text PDF

The sustainable production of fuels and industrial bulk chemicals by microorganisms in biotechnological processes is promising but still facing various challenges. In particular, toxic substrates require an efficient process control strategy. Methanol, as an example, has the potential to become a major future feedstock due to its availability from fossil and renewable resources.

View Article and Find Full Text PDF

This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line.

View Article and Find Full Text PDF