Among other methods, UWB-based multi-anchor localization systems have been established for industrial indoor localization systems. However, multi-anchor systems have high costs and installation effort. By exploiting the multipath propagation of the UWB signal, the infrastructure and thus the costs of conventional systems can be reduced.
View Article and Find Full Text PDFDevice-free localization (DFL) systems exploit changes in the radio frequency channel by measuring, for example, the channel impulse response (CIR), to detect and localize obstacles within a target area. However, due to a lack of well-defined interfaces, missing modularization, as well as complex system configuration, it is difficult to deploy DFL systems outside of laboratory setups. This paper focused on the system view and the challenges that come with setting up a DFL system in an indoor environment.
View Article and Find Full Text PDFIn radio-frequency (RF)-based device-free localization (DFL), the number of sensors acting as RF transmitters and receivers is crucial for accuracy and system costs. Two promising approaches for DFL have been identified in the past: radio tomographic imaging (RTI) and multi-static radar (MSR). RTI in its basic version requires many sensors for high accuracy, which increases the cost.
View Article and Find Full Text PDFIn this paper, we propose a multipath-assisted device-free localization (DFL) system that includes magnitude and phase information (MAMPI). The DFL system employs ultra-wideband (UWB) channel impulse response (CIR) measurements, enabling the extraction of several multipath components (MPCs) and thereby benefits from multipath propagation. We propose a radio propagation model that calculates the effect on the received signal based on the position of a person within a target area.
View Article and Find Full Text PDF