Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking.
View Article and Find Full Text PDFBackground And Hypothesis: Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia.
View Article and Find Full Text PDFDrugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) causes the release of several neuromodulators, leading to cortical activation and deactivation. The resulting preparatory cortical plasticity can be used to increase learning and memory in both rats and humans. The effects of VNS on cognition have mostly been studied either in animal models of different pathologies, and/or after extended VNS.
View Article and Find Full Text PDFAlcohol use disorder is associated with functional changes in the medial prefrontal cortex (mPFC), which include altered glutamatergic transmission and deficits in executive functions that contribute to relapse. Acamprosate (calcium-bis N-acetylhomotaurinate) reduces alcohol craving and relapse, effects that are thought to be mediated by acamprosate's ability to ameliorate alcohol-induced dysregulation of glutamatergic signaling. Treatment with acamprosate and its active moiety calcium (CaCl) both improve deficits in cognitive flexibility in postdependent mice following chronic intermittent ethanol (CIE) exposure.
View Article and Find Full Text PDFSynaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice).
View Article and Find Full Text PDFRedox dysregulation and oxidative stress are final common pathways in the pathophysiology of a variety of psychiatric disorders, including schizophrenia. Oxidative stress causes dysfunction of GABAergic parvalbumin (PV)-positive interneurons (PVI), which are crucial for the coordination of neuronal synchrony during sensory and cognitive processing. Mitochondria are the main source of reactive oxygen species (ROS) in neurons and they control synaptic activity through their roles in energy production and intracellular calcium homeostasis.
View Article and Find Full Text PDFRational: Cue-induced craving memories, linked to drug-seeking behaviors, require key molecular processes for memory reconsolidation. Lidocaine, a sodium channel blocker, inhibits NMDA receptor activation and suppresses nitric oxide and ERK production. These processes are required for memory re-consolidation; inhibiting them may reduce cue-related craving memories in cocaine dependent subjects.
View Article and Find Full Text PDFRemote and minimally-invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold-coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad-PC-Rad as a tool for the delivery of bioactive molecules into brain tissue.
View Article and Find Full Text PDFThe term "working memory" (WM) describes the ability to maintain and manipulate information in the memory for the guidance of goal-directed behavior.[..
View Article and Find Full Text PDFNeuropathic pain caused by nerve injury presents with severe spontaneous pain and a variety of comorbidities, including deficits in higher executive functions. None of these clinical problems are adequately treated with current analgesics. Targeting of the mitogen-activated protein kinase-interacting kinase (MNK1/2) and its phosphorylation target, the mRNA cap binding protein eIF4E, attenuates many types of nociceptive plasticity induced by inflammatory mediators and chemotherapeutic drugs but inhibiting this pathway does not alter nerve injury-induced mechanical allodynia.
View Article and Find Full Text PDFHippocampal lesions are a defining pathology of Alzheimer's disease (AD). However, the molecular mechanisms that underlie hippocampal synaptic injury in AD have not been fully elucidated. Current therapeutic efforts for AD treatment are not effective in correcting hippocampal synaptic deficits.
View Article and Find Full Text PDFBackground: Drug use causes the formation of strong cue/reward associations which persist long after cessation of drug-taking and contribute to the long-term risk of relapse. Extinguishing these associations may reduce cue-induced craving and relapse. Previously, we found that pairing vagus nerve stimulation (VNS) with extinction of cocaine self-administration reduces cue-induced reinstatement; however, it remains unclear whether this was primarily caused by extinguishing the context, the instrumental response, or both.
View Article and Find Full Text PDFChronic pain patients suffer from pain-related cognitive deficits, even when taking commonly prescribed analgesics. These deficits are likely related to pain-related maladaptive plasticity in the frontal cortex. We sought to model cognitive deficits in mice with neuropathic pain to examine maladaptive morphological plasticity in the mPFC and to assess the effects of several therapeutics.
View Article and Find Full Text PDFRationale: Acamprosate (calcium-bis N-acetylhomotaurinate) is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Acamprosate can improve executive functions that are impaired by chronic intermittent ethanol (CIE) exposure. Recent work has suggested that acamprosate's effects on relapse prevention are due to its calcium component, which raises the question whether its pro-cognitive effects are similarly mediated by calcium.
View Article and Find Full Text PDFGlutamate theories of schizophrenia suggest that the disease is associated with a loss of NMDA receptors, specifically on GABAergic parvalbumin-expressing interneurons (PVIs), leading to changes in the excitation-inhibition balance in the prefrontal cortex (PFC). Oxidative stress contributes to the loss of PVI and the development of schizophrenia. Here, we investigated whether the glutathione precursor -acetyl cysteine (NAC) can prevent changes in synaptic transmission at pyramidal cells and PVIs that result from developmental NMDAR blockade and how these changes are related to mitochondrial dysfunction in the PFCs of mice.
View Article and Find Full Text PDFAlterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA) receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR) antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia.
View Article and Find Full Text PDFDrugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic plasticity to facilitate extinction of appetitive behaviors and to reduce relapse.
View Article and Find Full Text PDFUnlabelled: Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings.
View Article and Find Full Text PDFF1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer's disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear.
View Article and Find Full Text PDFExtinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory.
View Article and Find Full Text PDFBackground: The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol (EtOH) exposure is unknown.
View Article and Find Full Text PDFDysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology.
View Article and Find Full Text PDFRationale: Chronic alcohol-induced cognitive impairments and maladaptive plasticity of glutamatergic synapses are well-documented. However, it is unknown if prolonged alcohol exposure affects dendritic signaling that may underlie hippocampal dysfunction in alcoholics. Back-propagation of action potentials (bAPs) into apical dendrites of hippocampal neurons provides distance-dependent signals that modulate dendritic and synaptic plasticity.
View Article and Find Full Text PDFThe N-methyl-D-aspartic acid (NMDA)-hypofunction theory of schizophrenia suggests that schizophrenia is associated with a loss of NMDA receptors, specifically on corticolimbic parvalbumin (PV)-expressing GABAergic interneurons, leading to disinhibition of pyramidal cells and cortical desynchronization. However, the presumed changes in glutamatergic inputs onto PV interneurons have not been tested directly. We treated mice with the NMDAR antagonist ketamine during the second postnatal week and investigated persistent cellular changes in the adult medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings and immunohistochemistry.
View Article and Find Full Text PDF