Publications by authors named "Sven Jakupovic"

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by fungi of the Ustilaginaceae family in the presence of hydrophobic carbon sources like plant oils. In the present study, we investigated the structural composition of MELs produced from castor oil using seven different microorganisms and compared them to MEL structures resulting from other plant oils. Castor oil is an industrially relevant plant oil that presents as an alternative to currently employed edible plant oils like rapeseed or soybean oil.

View Article and Find Full Text PDF

For the first time, the design, screening, and validation of potent GSK-3β type-II inhibitors are presented. In the absence of crystallographic evidence for a DFG-out GSK-3β activation loop conformation, computational models were designed using an adapted DOLPHIN approach and a method consisting of Prime loop refinement, induced-fit docking, and molecular dynamics. Virtual screening of the Biogenics subset from the ZINC database led to an initial selection of 20 Phase I compounds revealing two low micromolar inhibitors in an isolated enzyme assay.

View Article and Find Full Text PDF

Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide-based scaffolds is reported.

View Article and Find Full Text PDF

A study of the components of Paris quadrifolia was undertaken to identify compounds with potential influence on cardiac cells, since previous reports suggested a cardiotoxic risk of this plant. Compounds isolated and identified included one new steroidal saponin, (23S,24S)-spirosta-5,25(27)-diene-1beta,3beta,21,23,24-pentol-1-O-beta-D-apiofuranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranoside 21-O-beta-D-apiofuranoside 24-O-beta-D-fucopyranoside (1), demonstrating quite unusual structural features, as well as the known compounds 26-O-beta-D-glucopyranosyl-(25R)-5-en-furost-3beta,17alpha,22alpha,26-tetraol-3-O-alpha-L-rhamnopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L-rhamnopyranosyl--(1-->2)]-beta-D-glucopyranoside (2), pennogenin 3-O-alpha-L-rhamnopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L-rhamnopyranosyl-(1-->2)]-beta-D-glucopyranoside (3), 7-O-beta-D-glucopyranosyl-kaempferol-3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-galactopyranoside (4), kaempferol-3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-galactopyranoside (5), 5-hydroxyecdysterone (6), and 20-hydroxyecdysone (7). The pennogenin derivative 3 showed strong cardiotoxic effects in an in vitro cellular model system, whereas the respective furostanol derivative 2 was inactive.

View Article and Find Full Text PDF

Recently, we developed a concept known as biology-oriented synthesis (BIOS), which targets the design and synthesis of small- to medium-sized compound libraries on the basis of genuine natural product templates to provide screening compounds with high biological relevance. We herein describe the parallel solution phase synthesis of two BIOS-based libraries starting from alpha-santonin (1). Modification of the sesquiterpene lactone 1 by introduction of a thiazole moiety followed by a Lewis-acid-mediated lactone opening yielded a first library of natural product analogues.

View Article and Find Full Text PDF

Protein phosphatases have recently emerged as important targets for research in chemical biology and medicinal chemistry, and new classes of phosphatase inhibitors are in high demand. BIOS (biology-oriented synthesis) employs the criteria of relevance to nature and biological prevalidation for the design and synthesis of compound collections. In an application of the BIOS principle, an efficient solid-phase synthesis of highly substituted indolo[2,3-a]quinolizidines by using a vinylogous Mannich-Michael reaction in combination with phosgene- or acid-mediated ring closure was developed.

View Article and Find Full Text PDF

The generation of a natural-product-based library starting from andrographolide is described. Utilizing andrographolide itself in parallel solution-phase synthesis leads to a 360-membered library. The initial transformation of the starting material via ozonolysis is followed by the conversion into a suitable template by introduction of a thiazole moiety.

View Article and Find Full Text PDF