The integration of quantitative trait loci (QTLs) with disease genome-wide association studies (GWASs) has proven successful in prioritizing candidate genes at disease-associated loci. QTL mapping has been focused on multi-tissue expression QTLs or plasma protein QTLs (pQTLs). We generated a cerebrospinal fluid (CSF) pQTL atlas by measuring 6,361 proteins in 3,506 samples.
View Article and Find Full Text PDFAims: Although the neuroanatomical distribution of tau and amyloid-β is well studied in Alzheimer's disease (AD) (non)-amnestic clinical variants, that of neuroinflammation remains unexplored. We investigate the neuroanatomical distribution of activated myeloid cells, astrocytes, and complement alongside amyloid-β and phosphorylated tau in a clinically well-defined prospectively collected AD cohort.
Methods: Clinical variants were diagnosed antemortem, and brain tissue was collected post-mortem.
Background And Objectives: More than 200 genetic variants have been associated with multiple sclerosis (MS) susceptibility. However, it is unclear to what extent genetic factors influence lifetime risk of MS. Using a population-based birth-year cohort, we investigate the effect of genetics on lifetime risk of MS.
View Article and Find Full Text PDFTruncating genetic variants of , encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the coding missense variant rs772677709, that leads to a p.
View Article and Find Full Text PDFGenome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.
View Article and Find Full Text PDFBackground: Apolipoprotein-E (APOE) genetic testing for Alzheimer's disease is becoming more important as clinical trials are increasingly targeting individuals carrying APOE-ε4 alleles. Little is known about the interest in finding out one's genetic risk for Alzheimer's disease in the general population. Our objective was to examine this in a sample of cognitively normal (CN) adults within a population-based online research registry with the goal to implement APOE-ε4 status for trial recruitment.
View Article and Find Full Text PDFGenomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487).
View Article and Find Full Text PDFBackground: What combination of risk factors for Alzheimer's disease (AD) are most predictive of cognitive decline in cognitively unimpaired individuals remains largely unclear. We studied associations between APOE genotype, AD-Polygenic Risk Scores (AD-PRS), amyloid-β pathology and decline in cognitive functioning over time in a large sample of cognitively unimpaired older individuals.
Methods: We included 276 cognitively unimpaired older individuals (75 ± 10 years, 63% female) from the EMIF-AD PreclinAD cohort.
Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls.
View Article and Find Full Text PDFBackground: Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded.
View Article and Find Full Text PDFCharacterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.
View Article and Find Full Text PDFBackground: Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer's disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well.
View Article and Find Full Text PDFHuman longevity is influenced by the genetic risk of age-related diseases. As Alzheimer's disease (AD) represents a common condition at old age, an interplay between genetic factors affecting AD and longevity is expected. We explored this interplay by studying the prevalence of AD-associated single-nucleotide-polymorphisms (SNPs) in cognitively healthy centenarians, and replicated findings in a parental-longevity GWAS.
View Article and Find Full Text PDFBackground: Reported sex distributions differ between frontotemporal dementia (FTD) cohorts. Possible explanations are the evolving clinical criteria of FTD and its subtypes and the discovery of FTD causal genetic mutations that has resulted in varying demographics.
Objective: Our aim was to determine the sex distribution of sporadic and genetic FTD cases and its subtypes in an international cohort.
Brain-derived neurotrophic factor (BNDF) plays a role in synapse integrity. We investigated in 398 cognitively normal adults (60±8years, 41% female, MMSE=28±1) the joint association of the Val66Met polymorphism of the BDNF gene (Met+/-) and plasma BDNF levels and abnormal cerebrospinal fluid (CSF) amyloid-beta status (A+/-) with cognitive decline and dementia risk. Age-, sex- and education-adjusted linear mixed models showed that compared to Met-A-, Met+A+ showed steeper decline on tests of global cognition, memory, language, attention and executive functioning, while Met-A+ showed steeper decline on a smaller number of tests.
View Article and Find Full Text PDF