Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity.
View Article and Find Full Text PDFInternal tandem duplications (ITDs) in the FMS-like tyrosine kinase-3 (FLT3) are causally linked to acute myeloid leukemia (AML) with poor prognosis. Available FLT3 inhibitors (FLT3i) preferentially target inactive or active conformations of FLT3. Moreover, they co-target kinases for normal hematopoiesis, are vulnerable to therapy-associated tyrosine kinase domain (TKD) FLT3 mutants, or lack low nanomolar activity.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase (FLT3) is a clinically unresolved problem. AML cells frequently have a dysregulated expression and activity of epigenetic modulators of the histone deacetylase (HDAC) family. Therefore, we tested whether a combined inhibition of mutant FLT3 and class I HDACs is effective against AML cells.
View Article and Find Full Text PDFMutants of the FLT3 receptor tyrosine kinase (RTK) with duplications in the juxtamembrane domain (FLT3-ITD) act as drivers of acute myeloid leukemia (AML). Potent tyrosine kinase inhibitors (TKi) of FLT3-ITD entered clinical trials and showed a promising, but transient success due to the occurrence of secondary drug-resistant AML clones. A further caveat of drugs targeting FLT3-ITD is the co-targeting of other RTKs which are required for normal hematopoiesis.
View Article and Find Full Text PDF