Publications by authors named "Sven Heiligenthal"

Nonlinear networks with time-delayed couplings may show strong and weak chaos, depending on the scaling of their Lyapunov exponent with the delay time. We study strong and weak chaos for semiconductor lasers, either with time-delayed self-feedback or for small networks. We examine the dependence on the pump current and consider the question of whether strong and weak chaos can be identified from the shape of the intensity trace, the autocorrelations, and the external cavity modes.

View Article and Find Full Text PDF

We study chaotic synchronization in networks with time-delayed coupling. We introduce the notion of strong and weak chaos, distinguished by the scaling properties of the maximum Lyapunov exponent within the synchronization manifold for large delay times, and relate this to the condition for stable or unstable chaotic synchronization, respectively. In simulations of laser models and experiments with electronic circuits, we identify transitions from weak to strong and back to weak chaos upon monotonically increasing the coupling strength.

View Article and Find Full Text PDF