J Pharm Pharmacol
October 2012
Objectives: This study aimed to examine the long-term physical stability of quercetin nanocrystals produced by three methods.
Methods: Quercetin nanocrystals were prepared by high pressure homogenization, bead milling and cavi-precipitation. The nanocrystals produced by these methods were compared for particle size, saturation solubility and dissolution of the drug particles, and were subjected to stability testing.
Lutein is a well known antioxidant and anti-free radical used in cosmetic, nutraceutical industry with potential application in pharmaceutics as supportive antioxidant in treatments. As lipophilic molecule it is poorly soluble in water and has a low bioavailability. Lutein nanosuspension was prepared to enhance dissolution velocity, saturation solubility (C(s)), which are major factors determining oral bioavailability and penetration into the skin.
View Article and Find Full Text PDFTopical application of lutein as an innovative antioxidant, anti-stress and blue light filter, which is able to protect skin from photo damage, has got a special cosmetic and pharmaceutical interest in the last decade. Lutein is poorly soluble, and was therefore incorporated into nanocarriers for dermal delivery: solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and a nanoemulsion (NE). Nanocarriers were produced by high pressure homogenization.
View Article and Find Full Text PDFDrug nanocrystals are the latest, broadly introduced nanoparticulate carrier to the pharmaceutical market from the year 2000 onwards. The special features of nanocrystals for the delivery of poorly soluble drugs are briefly reviewed (saturation solubility, dissolution velocity, adhesiveness). The industrially relevant bottom up (precipitation) and top down production technologies (pearl milling, high pressure homogenization, combination technologies) are presented.
View Article and Find Full Text PDF