Publications by authors named "Sven Geisler"

Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMβ2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding.

View Article and Find Full Text PDF

Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process.

View Article and Find Full Text PDF

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential.

View Article and Find Full Text PDF

Parkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells.

View Article and Find Full Text PDF

Site-directed A-to-I RNA editing is a technology for re-programming genetic information at the RNA-level. We describe here the first design of genetically encodable guideRNAs that enable the re-addressing of human ADAR2 toward specific sites in user-defined mRNA targets. Up to 65% editing yield has been achieved in cell culture for the recoding of a premature Stop codon (UAG) into tryptophan (UIG).

View Article and Find Full Text PDF

Mutations in vacuolar protein sorting 35 (VPS35) have been linked to familial Parkinson's disease (PD). VPS35, a component of the retromer, mediates the retrograde transport of cargo from the endosome to the trans-Golgi network. Here we showed that retromer depletion increases the lysosomal turnover of the mannose 6-phosphate receptor, thereby affecting the trafficking of cathepsin D (CTSD), a lysosome protease involved in α-synuclein (αSYN) degradation.

View Article and Find Full Text PDF

Depolarized mitochondria are degraded by mitophagy in a process that depends on the Parkinson's disease gene products PINK1 and Parkin. This is accompanied by ubiquitylation of several mitochondrial substrates. The roles of E2 ubiquitin-conjugating enzymes (UBE2) in mitophagy are poorly understood.

View Article and Find Full Text PDF

α-Synuclein (aS) is a major constituent of Lewy bodies, which are not only a pathological marker for Parkinson disease but also a trigger for neurodegeneration. Cumulative evidence suggests that aS spreads from cell to cell and thereby propagates neurodegeneration to neighboring cells. Recently, Nedd4-1 (neural precursor cell expressed developmentally down-regulated protein 4-1), an E3 ubiquitin ligase, was shown to catalyze the Lys-63-linked polyubiquitination of intracellular aS and thereby facilitate aS degradation by the endolysosomal pathway.

View Article and Find Full Text PDF

Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library.

View Article and Find Full Text PDF

Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin recruitment to impaired mitochondria.

View Article and Find Full Text PDF

Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear.

View Article and Find Full Text PDF

Objective: The ubiquitin-proteasome system is the main degradation machinery for intracellularly altered proteins. Hyperglycemia has been shown to increase intracellular levels of the reactive dicarbonyl methylglyoxal (MGO) in cells damaged by diabetes, resulting in modification of proteins and alterations of their function. In this study, the influence of MGO-derived advanced glycation end product (AGE) formation on the activity of the proteasome was investigated in vitro and in vivo.

View Article and Find Full Text PDF

DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL.

View Article and Find Full Text PDF