Publications by authors named "Sven Burgdorf"

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC.

View Article and Find Full Text PDF

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis.

View Article and Find Full Text PDF

The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells.

View Article and Find Full Text PDF

Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo.

View Article and Find Full Text PDF

Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8, XCR1, CLEC9A, BDCA3 conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8 T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades.

View Article and Find Full Text PDF

The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs), especially macrophages and dendritic cells (DCs), are important for the induction of an adaptive immune response through their phagocytic capacity. APCs internalize extracellular antigens and, dependent on their intracellular localization, antigen-derived peptides are presented on MHC I or MHC II molecules. In context of antigen presentation and T cell activation tracking of internalized antigens is of high interest.

View Article and Find Full Text PDF

Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years.

View Article and Find Full Text PDF

Tissue osmolarity varies among different organs and can be considerably increased under pathologic conditions. Hyperosmolarity has been associated with altered stimulatory properties of immune cells, especially macrophages and dendritic cells. We have recently reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection.

View Article and Find Full Text PDF

N-glycosylation is generally accepted to enhance the immunogenicity of antigens because of two main reasons. First, the attachment of glycans enables recognition by endocytic receptors like the mannose receptor (MR) and hence increased uptake by dendritic cells (DCs). Second, foreign glycans are postulated to be immunostimulatory and their recognition could induce DC activation.

View Article and Find Full Text PDF

The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo.

View Article and Find Full Text PDF

Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu.

View Article and Find Full Text PDF

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER.

View Article and Find Full Text PDF

The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells.

View Article and Find Full Text PDF

Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure. Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction.

View Article and Find Full Text PDF

The efficiency of antigen cross-presentation, which is the presentation of extracellular antigens on MHC I molecules, critically depends on the stability of the internalized antigens. Since rapid degradation within the lysosomal compartment impairs cross-presentation, potent cross-presenting cells display several mechanisms to prevent activation of lysosomal proteases. Additionally, distinct endocytic receptors can target internalized antigens towards non-degradative early endosomes, from where efficient cross-presentation can occur.

View Article and Find Full Text PDF

The Maillard reaction (also referred to as "glycation") takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects.

View Article and Find Full Text PDF

Processing and presentation of antigen on MHC-I class I molecules serves to present peptides derived from cytosolic proteins to CD8(+) T cells. Infection with bacteria that remain in phagosomal compartments, such as Mycobacterium tuberculosis (Mtb), provides a challenge to this immune recognition as bacterial proteins are segregated from the cytosol. Previously we identified the Mtb phagosome itself as an organelle capable of loading MHC Class I molecules with Mtb antigens.

View Article and Find Full Text PDF

Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process.

View Article and Find Full Text PDF

Isolation and characterization of antigen-containing endosomes remains difficult utilizing standard purification techniques. Here, we describe a method, which allows isolation of antigen-loaded endosomes, that is based on flow cytometrical analysis and sorting. We specifically isolated antigen-containing endosomes from cells that had taken up fluorochrome-labeled ovalbumin via mannose receptor-mediated endocytosis.

View Article and Find Full Text PDF

Professional antigen-presenting cells such as dendritic cells (DCs) and macrophages internalize extracellular antigens, process them intracellularly, and present the resulting antigen-derived peptides in the context of MHC I or MHC II molecules. Since the intracellular routing of the antigen determines whether antigens are presented on MHC I or MHC II molecules, a profound analysis of the intracellular distribution of the internalized antigens is of high interest. Here, we describe an immunofluorescence protocol to monitor the intracellular routing of the model-antigen Ovalbumin in bone marrow-derived dendritic cells (BM-DCs).

View Article and Find Full Text PDF

The molecular mechanisms governing cross-presentation of extracellular antigens on MHC I molecules are not fully understood. It is generally assumed that, in order to be processed for cross-presentation, most antigens need to be transported from the endosomal compartment into the cytosol to be processed by the cytosolic proteasome. The mechanisms regulating such intracellular transport are largely unknown.

View Article and Find Full Text PDF

Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization.

View Article and Find Full Text PDF