In the field of stem cell research, there is a strong requirement for the discovery of new biomarkers that more accurately define stem and progenitor cell populations, as well as their differentiated derivatives. The very-low-molecular-weight (<5 kDa) proteome/peptidome remains a poorly investigated but potentially rich source of cellular biomarkers. Here we describe a label-free LC-MALDI-TOF/TOF quantification approach to screen the very-low-molecular-weight proteome, i.
View Article and Find Full Text PDFProteome analysis of Corynebacterium glutamicum ATCC 13032 showed that levels of several proteins increased drastically in response to heat shock. These proteins were identified as DnaK, GroEL1, GroEL2, ClpB, GrpE, and PoxB, and their heat response was in agreement with previous transcriptomic results. A major heat-induced protein was absent in the proteome of strain 13032B of C.
View Article and Find Full Text PDFBy data mining in the sequence of the Corynebacterium glutamicum ATCC 13032 genome, six putative mycolyltransferase genes were identified that code for proteins with similarity to the N-terminal domain of the mycolic acid transferase PS1 of the related C. glutamicum strain ATCC 17965. The genes identified were designated cop1, cmt1, cmt2, cmt3, cmt4, and cmt5 ( cmt from corynebacterium mycolyl transferases).
View Article and Find Full Text PDFThe initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled.
View Article and Find Full Text PDF