Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics.
View Article and Find Full Text PDFDrosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2023
The actin cytoskeleton represents a highly dynamic filament system providing cell structure and mechanical forces to drive a variety of cellular processes. The dynamics of the actin cytoskeleton are controlled by a number of conserved proteins that maintain the pool of actin monomers, promote actin nucleation, restrict the length of actin filaments and cross-link filaments into networks or bundles. Previous work has been established that cytoplasmic calcium is an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFExocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved actin-crosslinking protein Swip-1 as a novel regulator controlling exocytosis of glue granules in the Drosophila salivary gland.
View Article and Find Full Text PDFMethods Mol Biol
January 2023
Collective cell migration has a key role in tissue morphogenesis, wound healing, tissue regeneration, and cancer invasion. In recent years, different animal models have been established to analyze how chemical and mechanical stimuli shape the behavior of single cells into tissues and organs. At present, there are still only a few model systems that allow to genetically dissect underlying molecular mechanisms driving cell motility during tissue morphogenesis at high resolution in real time.
View Article and Find Full Text PDFActin, as an ancient and fundamental protein, participates in various cytoplasmic as well as nuclear functions in eukaryotic cells. Based on its manifold tasks in the nucleus, it is a reasonable assumption that the nuclear presence of actin is essential for the cell, and consequently, its nuclear localization is ensured by a robust system. However, today only a single nuclear import and a single nuclear export pathway is known which maintain the dynamic balance between cytoplasmic and nuclear actin pools.
View Article and Find Full Text PDFChanges in cell morphology require the dynamic remodeling of the actin cytoskeleton. Calcium fluxes have been suggested as an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we identify the EF-hand domain containing protein EFhD2/Swip-1 as a conserved lamellipodial protein strongly upregulated in Drosophila macrophages at the onset of metamorphosis when macrophage behavior shifts from quiescent to migratory state.
View Article and Find Full Text PDFThe WAVE regulatory complex (WRC) is the main activator of the Arp2/3 complex, promoting lamellipodial protrusions in migrating cells. The WRC is basally inactive but can be activated by Rac1 and phospholipids, and through phosphorylation. However, the in vivo relevance of the phosphorylation of WAVE proteins remains largely unknown.
View Article and Find Full Text PDFCollective migration is a key process that is critical during development, as well as in physiological and pathophysiological processes including tissue repair, wound healing and cancer. Studies in genetic model organisms have made important contributions to our current understanding of the mechanisms that shape cells into different tissues during morphogenesis. Recent advances in high-resolution and live-cell-imaging techniques provided new insights into the social behavior of cells based on careful visual observations within the context of a living tissue.
View Article and Find Full Text PDFCells migrate collectively to form tissues and organs during morphogenesis. Contact inhibition of locomotion (CIL) drives collective migration by inhibiting lamellipodial protrusions at cell-cell contacts and promoting polarization at the leading edge. Here, we report a CIL-related collective cell behavior of myotubes that lack lamellipodial protrusions, but instead use filopodia to move as a cohesive cluster in a formin-dependent manner.
View Article and Find Full Text PDFThe formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved through a dynamic process of branch formation, branch extension and retraction.
View Article and Find Full Text PDFWhereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of in mouse is embryonic lethal. Reminiscent of , was highly expressed in the embryo heart, and cardiac-restricted deletion in mice was embryonic lethal.
View Article and Find Full Text PDFMethods Mol Biol
January 2019
The most abundant immune cells in Drosophila are macrophage-like plasmatocytes that fulfill central roles in morphogenesis, immune and tissue damage response. The various genetic tools available in Drosophila together with high-resolution and live-imaging microscopy techniques make Drosophila macrophages an excellent model system that combines many advantages of cultured cells with in vivo genetics. Here, we describe the isolation and staining of macrophages from larvae for ex vivo structured illumination microscopy (SIM), the preparation of white prepupae for in vivo 2D random cell migration analysis, and the preparation of pupae (18 h after puparium formation, APF) for in vivo 3D directed cell migration analysis upon wounding using spinning disk microscopy.
View Article and Find Full Text PDFThe actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
March 2017
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane.
View Article and Find Full Text PDFThe Wiskott-Aldrich syndrome protein and SCAR homolog (WASH; also known as Washout in flies) is a conserved actin-nucleation-promoting factor controlling Arp2/3 complex activity in endosomal sorting and recycling. Previous studies have identified WASH as an essential regulator in Drosophila development. Here, we show that homozygous wash mutant flies are viable and fertile.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2017
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
View Article and Find Full Text PDFDirectional cell movements during morphogenesis require the coordinated interplay between membrane receptors and the actin cytoskeleton. The WAVE regulatory complex (WRC) is a conserved actin regulator. Here, we found that the atypical cadherin Fat2 recruits the WRC to basal membranes of tricellular contacts where a new type of planar-polarized whip-like actin protrusion is formed.
View Article and Find Full Text PDFWiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member.
View Article and Find Full Text PDFEndothelial junctions are dynamic structures organized by multi-protein complexes that control monolayer integrity, homeostasis, inflammation, cell migration and angiogenesis. Newly developed methods for both the genetic manipulation of endothelium and microscopy permit time-lapse recordings of fluorescent proteins over long periods of time. Quantitative data analyses require automated methods.
View Article and Find Full Text PDFEukaryotic cells have evolved a variety of actin-binding proteins to regulate the architecture and the dynamics of the actin cytoskeleton in time and space. The Diaphanous-related formins (DRF) represent a diverse group of Rho-GTPase-regulated actin regulators that control a range of actin structures composed of tightly-bundled, unbranched actin filaments as found in stress fibers and in filopodia. Under resting conditions, DRFs are auto-inhibited by an intra-molecular interaction between the C-terminal and the N-terminal domains.
View Article and Find Full Text PDFF-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.
View Article and Find Full Text PDF