Publications by authors named "Sveinung G Ingebrigtsen"

The hydration of phospholipids, electrospun into polymeric nanofibers and used as templates for liposome formation, offers pharmaceutical advantages as it avoids the storage of liposomes as aqueous dispersions. The objective of the present study was to electrospin and characterize amphiphilic nanofibers as templates for the preparation of antibiotic-loaded liposomes and compare this method with the conventional film-hydration method followed by extrusion. The comparison was based on particle size, encapsulation efficiency and drug-release behavior.

View Article and Find Full Text PDF

The antimicrobial drug chloramphenicol (CAM) exhibits activity against resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). However, its use has been limited due to its toxicity. As the threat of antibiotic resistance continues to grow, a promising approach might be to increase the use of historical antimicrobial agents that demonstrate clinical efficacy, but are hampered by toxicity.

View Article and Find Full Text PDF

Encapsulation of more than one active pharmaceutical ingredient into nanocarriers such as liposomes is an attractive approach to achieve a synergic drug effect and less complicated dosing schedules in multi-drug treatment regimes. Liposomal drug delivery in acne treatment may improve drug efficiency by targeted delivery to pilosebaceous units, reduce adverse effects and improve patient compliance. We therefore aimed to co-encapsulate benzoyl peroxide (BPO) and chloramphenicol (CAM) into liposomes using the novel liposome processing method - dual asymmetric centrifugation (DAC).

View Article and Find Full Text PDF

Suberin fatty acids (SFAs) isolated from outer birch bark were investigated as an antimicrobial agent and biomaterial in nanofibrous mats intended for wound treatment. Electrospinning (ES) was used in preparing the composite nonwoven nanomats containing chloramphenicol (CAM; as a primary antimicrobial drug), SFAs, and polyvinylpyrrolidone (as a carrier polymer for ES). The X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and texture analysis were used for the physicochemical and mechanical characterization of the nanomats.

View Article and Find Full Text PDF

Objective: The objective of the present study was to utilize dual asymmetric centrifugation (DAC) as a novel processing approach for the production of liposomes-in-hydrogel formulations.

Materials And Methods: Lipid films of phosphatidylcholine, with and without chloramphenicol (CAM), were hydrated and homogenized by DAC to produce liposomes in the form of vesicular phospholipid gels with a diameter in the size range of 200-300 nm suitable for drug delivery to the skin. Different homogenization processing parameters were investigated along with the effect of adding propylene glycol (PG) to the formulations prior to homogenization.

View Article and Find Full Text PDF

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes' ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use.

View Article and Find Full Text PDF