To what extent does the subarachnoid cerebrospinal fluid (CSF) compartment communicate directly with the extravascular compartment of human brain tissue? Interconnection between the subarachnoid CSF compartment and brain perivascular spaces is reported in some animal studies, but with controversy, and in vivo CSF tracer studies in humans are lacking. In the present work, we examined the distribution of a CSF tracer in the human brain by MRI over a prolonged time span. For this, we included a reference cohort, representing close to healthy individuals, and a cohort of patients with dementia and anticipated compromise of CSF circulation (idiopathic normal pressure hydrocephalus).
View Article and Find Full Text PDFBackground: The composition of a carotid plaque is important for plaque vulnerability and stroke risk. The main aim of this study was to assess the potential of semiautomated segmentation of carotid plaque magnetic resonance imaging (MRI) in the assessment of the size of the lipid-rich necrotic core (LRNC).
Methods: Thirty-four consecutive patients with carotid stenosis of 70% or higher, who were scheduled for carotid endarterectomy, underwent a clinical neurological examination, Color duplex ultrasound, 3-T MRI with an 8-channel carotid coil, and blood tests.