Previously studied complexes with protonic and hydridic hydrogen bonds exhibit significant similarities. The present study provides a detailed investigation of the structure, stabilization, electronic properties, and spectral characteristics of protonic and hydridic hydrogen bonds using low-temperature infrared (IR) spectroscopy and computational methods. Complexes of pentafluorobenzene with ammonia (C₆F₅H⋯NH₃) and triethylgermane with trifluoroiodomethane (Et₃GeH⋯ICF₃) were analyzed using both experimental and computational tools.
View Article and Find Full Text PDFRecent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars.
View Article and Find Full Text PDFIn this study, we present a current state-of-the-art review of middle-to-near IR emission spectra of four simple astrophysically relevant molecular radicals-OH, NH, CN and CH. The spectra of these radicals were measured by means of time-resolved Fourier transform infrared spectroscopy in the 700-7500 cm spectral range and with 0.07-0.
View Article and Find Full Text PDFSpectroscopic characteristics of MeSi-H···Y complexes (Y = ICF, BrCN, and HCN) containing a hydridic hydrogen were determined experimentally by low-temperature IR experiments based on the direct spectral measurement of supersonically expanded intermediates on a cold substrate or by the technique of argon-matrix isolation as well as computationally at harmonic and one-dimensional anharmonic levels. The computations were based on DFT-D, MP2, MP2-F12, and CCSD(T)-F12 levels using various extended AO basis sets. The formation of all complexes related to the redshift of the Si-H stretching frequency upon complex formation was accompanied by an increase in its intensity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2022
In this work we present a time-resolved FTIR spectroscopic study on kinetics of atomic and molecular species, specifically CO, CN radical, N, HCN and CO generated in a glow discharge of formamide-nitrogen-water mixture in a helium buffer gas. Radicals such as NH, CH and OH have been proven to be fundamental stones of subsequent chemical reactions having a crucial role in a prebiotic synthesis of large organic molecules. This work contains three main goals.
View Article and Find Full Text PDFExamination of thermal decomposition of street samples of cocaine and methamphetamine shows that typical products detected in previous studies are accompanied by a wide palette of simple volatile compounds easily detectable by spectral techniques. These molecules increase smoke toxicity and their spectral detection can be potentially used for identification of drug samples by well-controlled laboratory thermolysis in temperature progression. In our study, street samples of cocaine and methamphetamine have been thermolyzed under vacuum over the temperature range of 350-650 °C.
View Article and Find Full Text PDFSynthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts.
View Article and Find Full Text PDFAlthough the effect of ionizing radiation on prebiotic chemistry is often overlooked, primordial natural radioactivity might have been an important source of energy for various chemical transformations. Estimates of the abundances of short-lived radionuclides on early Earth suggest that the primordial intensity of endogenous terrestrial radioactivity was up to 4 × 10 times higher than it is today. Therefore, we assume that chemical substances in contact with radioactive rocks should therefore undergo radiolysis.
View Article and Find Full Text PDFChemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system.
View Article and Find Full Text PDFTerrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels.
View Article and Find Full Text PDFBesides delivering plausible prebiotic feedstock molecules and high-energy initiators, extraterrestrial impacts could also affect the process of abiogenesis by altering the early Earth's geological environment in which primitive life was conceived. We show that iron-rich smectites formed by reprocessing of basalts due to the residual post-impact heat could catalyze the synthesis and accumulation of important prebiotic building blocks such as nucleobases, amino acids and urea.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFRecent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations.
View Article and Find Full Text PDFThe Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH + CO.
View Article and Find Full Text PDFLarge-scale plasma was created in gas mixtures containing methane using high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures corresponded to a cometary and/or meteoritic impact into the early atmosphere of either Titan or Earth. A multiple-centimeter-sized fireball was created by focusing a single 100 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell.
View Article and Find Full Text PDFThe origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments.
View Article and Find Full Text PDFRecent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
Proc Natl Acad Sci U S A
January 2015
The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact.
View Article and Find Full Text PDFHigh-resolution FT-IR spectroscopy combined with quantum chemical calculations was used to study the chemistry of OCS-disproportionation over the reduced surface of isotopically labelled, nanocrystalline TiO2. Analysis of the isotopic composition of the product gases has revealed that the reaction involves solely OCS molecules from the gas-phase. Using quantum chemical calculations we propose a plausible mechanistic scenario, in which two reduced Ti(3+) centres mediate the reaction of the adsorbed OCS molecules.
View Article and Find Full Text PDFThe formation of nucleobases from formamide during a high-energy density event, i.e., the impact of an extraterrestrial body into the planetary atmosphere, was studied by irradiation of formamide ice and liquid samples with a high-power laser in the presence of potential catalysts.
View Article and Find Full Text PDFRecently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J.
View Article and Find Full Text PDFWe report a spatial heterodyne Fourier-transform spectrometer implemented with an array of optical fiber interferometers. This configuration generates a wavelength-dependent stationary interferogram from which the input spectrum is retrieved in a single shot without scanning elements. Furthermore, fabrication and experimental deviations from the ideal behavior of the device are corrected by spectral inversion algorithms.
View Article and Find Full Text PDFThe formamide-based synthesis of nucleic acids is considered as a nonaqueous scenario for the emergence of biomolecules from inorganic matter. In the current study, we scrutinized the chemical composition of formamide ices mixed with an FeNi meteorite material treated with laser-induced dielectric breakdown plasma created in nitrogen buffer gas. These experiments aimed to capture the first steps of those chemical transformations that may lead to the formation of nucleobases during the impact of an extraterrestrial icy body containing formamide on an early Earth atmosphere.
View Article and Find Full Text PDF