Publications by authors named "Suzy L Wengel"

The clinical use of small interfering RNA (siRNA) is hampered by poor uptake by tissues and instability in circulation. In addition, off-target effects pose a significant additional problem for therapeutic use of siRNA. Chemical modifications of siRNA have been reported to increase stability and reduce off-target effects enabling possible therapeutic use of siRNA.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addressing. Recent studies have successfully improved siRNA performance by the introduction of several types of chemical modifications.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2-8 of either siRNA strand counting from the 5'-end) and complementary sequences in the 3'UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified.

View Article and Find Full Text PDF

This study describes the first application of unlocked nucleic acid (UNA)-modified small interfering RNAs (siRNAs) directed against a medically relevant target, the coxsackievirus B3. We systematically analyzed the impact of different siRNA modification patterns and observed good compatibility of the introduction of UNA with the maintenance of high antiviral activity. Additionally, the polarity of an siRNA was successfully reversed by modulating the relative stability of the termini with locked nucleic acid (LNA) and UNA as shown in a reporter assay.

View Article and Find Full Text PDF