Publications by authors named "Suzy A Griffin"

phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted -phenylpiperazine analogs were evaluated.

View Article and Find Full Text PDF

As part of our on-going effort to explore the role of dopamine receptors in drug addiction and identify potential novel therapies for this condition, we have a identified a series of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide D ligands. Members of this class are highly selective for D versus D, and we have identified two compounds (13g and 13r) whose rat in vivo IV pharmacokinetic properties that indicate that they are suitable for assessment in in vivo efficacy models of substance use disorders.

View Article and Find Full Text PDF

We have previously reported on the ability of arylamide phenylpiperazines to bind selectively to the D3 versus the D2 dopamine receptor subtype. For these studies, we used LS-3-134 as the prototypic arylamide phenylpiperazine ligand because it binds with high affinity at D3 dopamine receptor (0.17 nM) and exhibits >150-fold D3 vs D2 receptor binding selectivity.

View Article and Find Full Text PDF

SV 293 [1-([5-methoxy-1H-indol-3-yl]methyl)-4-(4-[methylthio]​phenyl)piperidin-4-ol] binds with 100-fold higher affinity to human D2 receptors compared to the human D3 and D4 dopamine receptor subtypes. We investigated the intrinsic efficacy of this compound at the D2 dopamine receptor subtype using both: (1) a forskolin-dependent adenylyl cyclase inhibition assay and (2) an electrophysiological assay for evaluating coupling to G-protein-coupled inwardly rectifying potassium channels. In both assays SV 293 was found to be a neutral antagonist capable of blocking the effects of the full D2-like receptor agonist quinpirole.

View Article and Find Full Text PDF

We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay.

View Article and Find Full Text PDF

N-(3-fluoro-4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazine-1-yl)butyl)arylcarboxamides were prepared and evaluated for binding and function at dopamine D3 receptors (D3Rs) and dopamine D2 receptors (D2Rs). In this series, we discovered some of the most D3R selective compounds reported to date (e.g.

View Article and Find Full Text PDF

The substituted 4-phenylpiperazine D3 dopamine receptor selective antagonist PG01037 ((E)-N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)but-2-enyl)-4-(pyridin-2-yl)benzamide) was reported to attenuate L-dopa-associated abnormal involuntary movements (AIMs) in unilaterally lesioned rats, a model of L-dopa-dependent dyskinesia in patients with Parkinson's Disease (Kumar et al., 2009a). We now report that PG01042 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-3-yl)benzamide), which is a D3 dopamine receptor selective agonist for adenylyl cyclase inhibition and a partial agonist for mitogenesis, is also capable of attenuating AIMs scores.

View Article and Find Full Text PDF

In view of the therapeutic importance of dopamine D(3) and D(2) receptors, there remains considerable interest in novel ligands. Herein, we show that the tetrahydroisoquinoline 1H-indole-2-carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-cyclohexyl}-amide (SB269,652) behaves as an atypical, allosteric antagonist at D(3) and D(2) receptors. Accordingly, SB269,652 potently (low nanomolar range) abolished specific binding of [(3)H]nemanopride and [(3)H]spiperone to Chinese hamster ovary-transfected D(3) receptors when radioligands were used at 0.

View Article and Find Full Text PDF

A panel of structurally related substituted 4-phenylpiperazines with nanomolar affinity and selectivity at D3 dopamine receptors has been synthesized. Compounds in which a heterocyclic (2-phenyl pyridyl, 3-phenyl pyridyl, benzothiophene, or benzofuran) moiety is adjacent to the amide was varied and/or a double bond (trans-butenyl) replaced the four-carbon aliphatic chain linking the arylamide with the 4-phenylpiperazine moiety were compared for (a) affinity at human D2 and D3 dopamine receptors, (b) intrinsic efficacy using an adenylyl cyclase inhibition assay, and (c) intrinsic efficacy using a mitogenic assay. All 16 compounds were (a) more efficacious for the D3 receptor cyclase inhibition assay than for the D3 receptor mitogenic assay and (b) exhibited the same or greater efficacy at D3 compared to D2 receptor (with the exception of one compound).

View Article and Find Full Text PDF

A panel of novel D2 and D3 dopamine receptor selective antagonists, partial agonists and full agonists have been evaluated for the ability to attenuate L-dopa-associated abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA) unilaterally lesioned male Sprague Dawley rats, which is an animal model of L-dopa-induced dyskinesia (LID). LID is often observed in patients with Parkinson's Disease following chronic treatment with L-dopa. The intrinsic activity of these dopaminergic compounds was determined using a forskolin-dependent adenylyl cyclase inhibition assay with transfected HEK 293 cells expressing either the human D2Long or D3 dopamine receptor subtype.

View Article and Find Full Text PDF

The D3 dopamine receptor selective antagonist PG01037 has been evaluated for the ability to attenuate L-dopa-associated abnormal involuntary movements (AIMs) in unilaterally lesioned male Sprague-Dawley rats, which is a model of L-dopa-dependent dyskinesia in patients with Parkinson's Disease. The intrinsic activity of PG01037 was determined using a) a forskolin-dependent adenylyl cyclase inhibition assay with transfected HEK 293 cells expressing either the human D2Long or D3 dopamine receptor subtype and b) an assay for agonist-associated mitogenesis. For the initial experiments, the 5-HT1A receptor selective partial agonist buspirone was used as a positive control to verify our ability to quantitate changes in total AIMs and AIMs minus locomotor scores.

View Article and Find Full Text PDF