The synthesis, structure, and circularly polarized phosphorescence (CPP) properties of axially chiral cyclometalated binuclear platinum(II) complexes were described. A series of optically pure binuclear platinum(II) complexes were synthesized in five steps from commercially available ()- or ()-1,1'-bi-2-naphthol (BINOL) as starting materials. Their three-dimensional molecular structures and square-planar coordination geometries were elucidated from X-ray diffraction and 2D NMR analysis.
View Article and Find Full Text PDFStimuli-responsive organic luminescent crystals have attracted significant attention in recent years for their potential in sensor and memory applications. While turn-on luminescence is superior in detection sensitivity compared with turn-off luminescence, the development of organic crystals that exhibit turn-on luminescence in response to multiple stimuli remains a significant challenge. Herein, the crystals of chiral bisimidazolyl 1,1'-bi-2-naphthol (BINOL) dimethyl ether have exhibited a dual-stimuli-responsive turn-on luminescence based on two distinct mechanisms.
View Article and Find Full Text PDFThe adjustment of the main helical scaffold in helicenes is a fundamental strategy for modulating their optical features, thereby enhancing their potential for diverse applications. This work explores the influence of helical elongation (n = 5-9) on the structural, photophysical, and chiroptical features of symmetric oxa[n]helicenes. Crystal structure analyses revealed structural variations with helical extension, impacting torsion angles, helical pitch, and packing arrangements.
View Article and Find Full Text PDF5,5',6,6',7,7',8,8'-Octahydro-1,1'-bi-2-naphthol (hbNaph) is an axially chiral molecule consisting of a smaller π-electronic system than that for 1,1'-bi-2-naphthol (BINOL). The absorption and circular dichroism (CD) bands of hbNaph appear in a shorter wavelength region below 310 nm, compared to those of BINOL, and its fluorescence is in the invisible UV region. However, increasing the concentration of hbNaph in solution up to 0.
View Article and Find Full Text PDFA chiral platinum(II) complex with a helical Schiff-base [4]helicene ligand exhibits intense red circularly polarized phosphorescence (CPP) with a of 0.010 in the dilute solution state. The intense CPP was caused by a change in the electronic transition character based on the induction of the helical structure.
View Article and Find Full Text PDFBoron complexes with Schiff-base [4]helicene ligands were synthesized. These complexes were characterized by NMR spectroscopy and their helical molecular structures were unequivocally established by X-ray diffraction (XRD) analysis. The helical boron complexes exhibited efficient photoluminescence under UV irradiation, and the circularly polarized luminescence (CPL) properties were investigated for optically pure samples.
View Article and Find Full Text PDFCircularly polarized luminescence (CPL) features of BINOL-decorated cyclotriphosphazenes (CPs) are reported for the first time. The luminescence dissymmetry factor (g ) of these compounds in chloroform solutions and polymethyl methacrylate (PMMA) thin films with wt 1 % doping concentrations are found to be 1.0×10 , and 2.
View Article and Find Full Text PDFInvited for the cover of this issue are the groups of Kazuteru Usui and Satoru Karasawa at Showa Pharmaceutical University, and Yoshitane Imai at Kindai University. The image depicts how a phosphine-oxide-bearing helicene exhibits markedly enhanced CPL response in the excited state compared with that of one with a corresponding phosphine. Read the full text of the article at 10.
View Article and Find Full Text PDFSmall chiral organic molecules with CD properties are in high demanded due to their potential use in promising electronic and biological applications. Herein, we reveal a system in which the oxidation of a phosphino group to the corresponding phosphine oxide on the inner rim of a helicene derivative induces a CPL response. Laterally π-extended 7,8-dihydro[5]helicenes bearing phosphine and phosphine oxide groups on their inner helical rims (i.
View Article and Find Full Text PDF