Existing controllers for robotic powered prostheses regulate the prosthesis speed, timing, and energy generation using predefined position or torque trajectories. This approach enables climbing stairs step-over-step. However, it does not provide amputees with direct volitional control of the robotic prosthesis, a functionality necessary to restore full mobility to the user.
View Article and Find Full Text PDFPowered lower-limb prostheses have the potential to improve amputee mobility by closely imitating the biomechanical function of the missing biological leg. To accomplish this goal, powered prostheses need controllers that can seamlessly adapt to the ambulation activity intended by the user. Most powered prosthesis control architectures address this issue by switching between specific controllers for each activity.
View Article and Find Full Text PDFAmbulation in everyday life requires walking at variable speeds, variable inclines, and variable terrains. Powered prostheses aim to provide this adaptability through control of the actuated joints. Some powered prosthesis controllers can adapt to discrete changes in speed and incline but require manual tuning to determine the control parameters, leading to poor clinical viability.
View Article and Find Full Text PDFAmbulation with existing prostheses is extremely difficult for individuals with bilateral above-knee amputations. Commonly prescribed prostheses are passive devices that cannot replace the biomechanical functions of the missing biological legs. As a result, most individuals with bilateral above-knee amputations can only walk for short distances, have a high risk of falling, and are unable to ascend stairs with a natural gait pattern.
View Article and Find Full Text PDF