Background: Intercellular adhesion molecule-1 (ICAM-1) is a critical target-docking molecule on epithelial cells for 90% of human rhinovirus (HRV) serotypes. Two forms of ICAM-1 exist, membranous (mICAM-1) and soluble (sICAM-1), both expressed by bronchial epithelial cells. Interferon-gamma (IFN-gamma), a crucial Th-1 immuno-regulatory mediator, can modulate mICAM-1 expression; however its simultaneous effects on mICAM-1: sICAM-1 levels and their consequent outcome on cell infectivity have not been previously explored.
View Article and Find Full Text PDFPurpose: Current diagnostic imaging modalities for human bronchial airways do not possess sufficient resolution and tissue penetration depth to detect early morphologic changes and to differentiate in real-time neoplastic pathology from nonspecific aberrations. Optical coherence tomography (OCT) possesses the requisite high spatial resolution for reproducible delineation of endobronchial wall profiling.
Experimental Design: To establish whether OCT could differentiate between the composite microstructural layers of the human airways and simultaneously determine in situ morphologic changes, using a bench-top OCT system, we obtained cross-sectional images of bronchi from 15 patients undergoing lung resections for cancer.
An ideal diagnostic system for the human airways should be able to detect and define early development of premalignant pathological lesions, to facilitate optimal curative treatment and prevent irreversible and/or invasive lung disease. There is great need for exploration of safe, repeatable imaging techniques which can run at real-time and with high spatial resolution. In this study, optical coherence tomography (OCT) was utilized to acquire cross-sectional images of upper and lower airways using fresh pig lung resections as a model system.
View Article and Find Full Text PDFHuman rhinoviruses are responsible for many upper respiratory tract infections. 90% of rhinoviruses utilize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, which also plays a critical role in recruitment of immune effector cells. Two forms of this receptor exist; membrane-bound (mICAM-1) and soluble ICAM-1 (sICAM-1).
View Article and Find Full Text PDF