Publications by authors named "Suzanne Van Der Horst"

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Human cells can trigger a form of programmed cell death (apoptosis) when faced with DNA damage, primarily through the activation of the p53 protein.
  • Interestingly, even cells without p53 can still undergo apoptosis, which seems to be linked to issues with protein translation, specifically ribosomes stalling on rare codons and reduced translation initiation.
  • A genetic study revealed that the tRNAse SLFN11 and the kinase GCN2 are crucial for this stalling and subsequent stress signaling, which leads to apoptosis, offering insights into chemotherapy resistance in certain tumors where SLFN11 is often inactive.
View Article and Find Full Text PDF

Epithelial tubes are essential components of metazoan organ systems that control the flow of fluids and the exchange of materials between body compartments and the outside environment. The size and shape of the central lumen confer important characteristics to tubular organs and need to be carefully controlled. Here, we identify the small coiled-coil protein BBLN-1 as a regulator of lumen morphology in the C.

View Article and Find Full Text PDF

A correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight into the mechanisms involved, we studied the stem cell-like seam cells in the epidermis.

View Article and Find Full Text PDF

Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation.

View Article and Find Full Text PDF

Proper regulation of the formation and stabilization of epithelial cell-cell adhesion is crucial in embryonic morphogenesis and tissue repair processes. Defects in this process lead to organ malformation and defective epithelial barrier function. A combination of chemical and mechanical cues is used by cells to drive this process.

View Article and Find Full Text PDF

Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation.

View Article and Find Full Text PDF