Introduction: Women with early bilateral salpingo-oophorectomy (BSO) have greater Alzheimer's disease (AD) risk than women with spontaneous menopause (SM), but the pathway toward this risk is understudied. Considering associative memory deficits may reflect early signs of AD, we studied how BSO affected brain activity underlying associative memory.
Methods: Early midlife women with BSO (with and without 17β-estradiol therapy [ET]) and age-matched controls (AMCs) with intact ovaries completed a face-name associative memory task during functional magnetic resonance imaging.
Older adults with prediabetes or obesity (i.e., those at risk for diabetes) exhibit impaired structural brain networks.
View Article and Find Full Text PDFObjective: Ovarian removal prior to spontaneous/natural menopause (SM) is associated with increased risk of late life dementias including Alzheimer's disease. This increased risk may be related to the sudden and early loss of endogenous estradiol. Women with breast cancer gene mutations (BRCAm) are counseled to undergo oophorectomy prior to SM to significantly reduce their risk of developing breast, ovarian, and cervical cancers.
View Article and Find Full Text PDFChanges in functional brain connectivity (FBC) may indicate how lifestyle modifications can prevent the progression to dementia; FBC identifies areas that are spatially separate but temporally synchronized in their activation and is altered in those with mild cognitive impairment (MCI), a prodromal state between healthy cognitive aging and dementia. Participants with MCI were randomly assigned to one of five study arms. Three times per week for 20-weeks, participants performed 30-min of (control) cognitive training, followed by 60-min of (control) physical exercise.
View Article and Find Full Text PDFFunctional brain connectivity (FBC), or areas that are anatomically separate but temporally synchronized in their activation, represent a sensitive biomarker for monitoring dementia progression. It is unclear whether frailty is associated with FBC in those at higher risk of progression to dementia (e.g.
View Article and Find Full Text PDFImprovements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be.
View Article and Find Full Text PDFThe current state of label conventions used to describe brain networks related to executive functions is highly inconsistent, leading to confusion among researchers regarding network labels. Visually similar networks are referred to by different labels, yet these same labels are used to distinguish networks within studies. We performed a literature review of fMRI studies and identified nine frequently-used labels that are used to describe topographically or functionally similar neural networks: central executive network (CEN), cognitive control network (CCN), dorsal attention network (DAN), executive control network (ECN), executive network (EN), frontoparietal network (FPN), working memory network (WMN), task positive network (TPN), and ventral attention network (VAN).
View Article and Find Full Text PDFFront Hum Neurosci
November 2019
[This corrects the article DOI: 10.3389/fnhum.2016.
View Article and Find Full Text PDFAltered neural mechanisms are well-acknowledged in irritable bowel syndrome (IBS), a disorder of brain-gut-communication highly comorbid with anxiety and depression. As a key hub in corticolimbic inhibition, medial prefrontal cortex (mPFC) may be involved in disturbed emotion regulation in IBS. However, aberrant mPFC excitatory and inhibitory neurotransmission potentially contributing to psychological symptoms in IBS remains unknown.
View Article and Find Full Text PDFOlfactory dysfunction is an early manifestation of Parkinson's disease (PD). The present study aimed to illustrate potential differences between PD patients and healthy controls in terms of neural activity and functional connectivity within the olfactory brain network. Twenty PD patients and twenty healthy controls were examined with olfactory fMRI and resting-state fMRI.
View Article and Find Full Text PDFChanges in brain-gut interactions have been implicated in the pathophysiology of chronic visceral pain in irritable bowel syndrome (IBS). Different mechanisms of sensitization of visceral afferent pathways may contribute to the chronic visceral pain reports and associated brain changes that characterize IBS. They include increased gut permeability and gut associated immune system activation, and an imbalance in descending pain inhibitory and facilitatory mechanisms.
View Article and Find Full Text PDFStudying olfaction with functional magnetic resonance imaging (fMRI) poses various methodological challenges. This study aimed to investigate the effects of stimulation length and repetition time (TR) on the activation pattern of 4 olfactory brain regions: the anterior and the posterior piriform cortex, the orbitofrontal cortex, and the insula. Twenty-two healthy participants with normal olfaction were examined with fMRI, with 2 stimulation lengths (6 s and 15 s) and 2 TRs (0.
View Article and Find Full Text PDFIncreased perception of visceral stimuli is a key feature of Irritable Bowel Syndrome (IBS). While altered resting-state functional connectivity (rsFC) has been also reported in IBS, the relationship between visceral hypersensitivity and aberrant rsFC is unknown. We therefore assessed rsFC within the salience, sensorimotor and default mode networks in patients with and without visceral hypersensitivity and in healthy controls (HCs).
View Article and Find Full Text PDFThe study investigated brain activity changes during performance of a verbal working memory task in a population of adolescents with narcolepsy. Seventeen narcolepsy patients and twenty healthy controls performed a verbal working memory task during simultaneous fMRI and EEG acquisition. All subjects also underwent MRS to measure GABA and Glutamate concentrations in the medial prefrontal cortex.
View Article and Find Full Text PDFThere is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution.
View Article and Find Full Text PDFNarcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy.
View Article and Find Full Text PDFThe present study sought to evaluate whether white matter microstructure abnormalities observed in a cohort of adolescents with attention-deficit/hyperactivity disorder (ADHD) have specific relationships with either or both Hyperactivity/Impulsivity and Inattentive ADHD symptom domains that would support a dimensional view of ADHD as adopted in the DSM-V. Diffusion tensor imaging (DTI) data were acquired on 22 adolescents diagnosed with ADHD. Multiple regression analyses were performed to determine whether scalar DTI measures in 13 tracts-of-interest demonstrated meaningful associations with Hyperactivity/Impulsivity or Inattentive symptom severity.
View Article and Find Full Text PDFAlthough hoarding disorder (HD) has been historically conceptualized as a subtype or dimension of obsessive-compulsive disorder (OCD), preliminary evidence suggests that these two disorders have distinct neural underpinnings. The aim of the present study was to compare the hemodynamic responses of HD patients, OCD patients, and healthy controls (HC) during response inhibition on a high-conflict Go/NoGo task that has previously proved sensitive to OCD. Participants comprised 24 HD patients, 24 OCD patients, and 24 HCs who completed a Go/NoGo task during functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFThe ability to precisely coordinate motor control to regularly-paced sensory stimuli requires an ability often called 'mental timekeeping', a distinct form of cognitive function. A consistent feature among conceptual models of the internal clock mechanism is an element of 'top-down' cognitive control. Although lesion and fMRI studies have provided indirect evidence supporting the role of the prefrontal cortex in exerting top-down influence over lower-level sensory and motor regions, little direct evidence exists.
View Article and Find Full Text PDFMental set switching is a complex executive function that is required when the focus of attention must be altered in order to adapt to a frequently-changing environment. While there is generally acceptance that switching is subserved by a fronto-parietal network, there is a considerable lack of consistency across studies as to other brain regions involved in executing mental set switches. This functional magnetic resonance imaging study sought to determine whether paradigmatic design aspects such as stimulus complexity, motor response complexity, and stimulus ordering could account for the differences in reporting of brain regions associated with mental set switching across previous studies.
View Article and Find Full Text PDFMental set switching is a key facet of executive control measured behaviorally through reaction time or accuracy (i.e., 'switch costs') when shifting among task types.
View Article and Find Full Text PDFSeveral reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients.
View Article and Find Full Text PDFUp to one-third of patients with mild traumatic brain injury (TBI) demonstrate persistent cognitive deficits in the 'executive' function domain. Mild TBI patients have shown prefrontal cortex activity deficits during the performance of executive tasks requiring active information maintenance and manipulation. However, it is unclear whether these deficits are related to the executive processes themselves, or to the degree of mental effort.
View Article and Find Full Text PDFAs the use of effective connectivity as become more popular, it is important to understand how the results from different analyses compare with each other, as the results from studies employing differing methods for determining connectivity may not reach the same conclusion. Simulated fMRI time series data were used to compare the results from four of the more commonly used computational methods, structural equation modeling, autoregressive analysis, Granger causality, and dynamic causal modeling to determine which may be better suited to the task. The results show that all three methods are able to detect changes in system dynamics.
View Article and Find Full Text PDF