Publications by authors named "Suzanne Spong"

Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA.

View Article and Find Full Text PDF

CTGF is a secreted matricellular protein with very complex biology. It has been shown to modulate many signaling pathways leading to cell adhesion and migration, angiogenesis, myofibroblast activation, and extracellular matrix deposition and remodeling, which together lead to tissue remodeling and fibrosis. It has been reported in the literature that inhibition of CTGF expression by siRNA prevents CCl4-induced liver fibrosis and can reverse fibrosis when administered after significant collagen deposition is observed.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF/CCN2) is thought to play a role in normal wound repair and bone remodeling, but also promotes fibrosis in several disease processes including diabetic nephropathy, sclerodoma and pancreatitis. A contribution to desmoplasia associated with pancreatic cancer progression has also been proposed. CTGF is induced by TGFbeta in diverse cell types, but TGFbeta receptor mediated signaling is impaired in pancreatic cancers and cell lines, usually due to DPC4/Smad4 mutations which arise during the later stages of intraepithelial neoplastic progression.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is aggressive and often resistant to treatment, and elevated levels of connective tissue growth factor (CTGF) are found in this type of cancer.
  • Researchers created pancreatic tumor cell lines with varying levels of CTGF to study its impact on tumor growth in both lab conditions and live mouse models.
  • While CTGF did not affect cell growth in standard cultures, it promoted anchorage-independent growth and tumor growth in mice, making CTGF a potential target for treatment, especially using a specific neutralizing antibody which showed promise in blocking tumor growth without harming normal tissue.
View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) plays an important role in fibrosis by modulating cell migration and cell growth but may also modify tumor growth and metastasis. Because CTGF is overexpressed in pancreatic ductal adenocarcinoma, we investigated the in vitro effects of CTGF on the proliferation and invasiveness of PANC-1 pancreatic cancer cells and examined the consequences of its in vivo inhibition on the growth and metastasis of these cells using a fully human CTGF-specific monoclonal antibody (FG-3019) in an orthotopic nude mouse model. Although PANC-1 cells expressed relatively high levels of endogenous CTGF mRNA, the addition of CTGF to conditioned medium increased the proliferation and invasiveness of PANC-1 cells.

View Article and Find Full Text PDF

We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases.

View Article and Find Full Text PDF

Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner.

View Article and Find Full Text PDF