Publications by authors named "Suzanne Simmons"

Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase.

View Article and Find Full Text PDF

Background: The use of mesoporous silica for cancer targeting is increasing rapidly. The association between rigid model of nanoparticles such as mesoporous silica and biological compounds with affinity for oncological diseases is a very promising drug targeting system nowadays.

Methods: In this study, we used the mesoporous silica (SBA-15) associated with aptamer (functionalized for the tumor marker MUC-1).

View Article and Find Full Text PDF

Heparanase is an enzyme involved in extracellular matrix remodelling and heparan sulphate proteoglycan catabolism. It is secreted by metastatic tumour cells, allowing them to penetrate the endothelial cell layer and basement membrane to invade target organs. The release of growth factors at the site of cleaved heparan sulphate chains further enhance the potential of the tumour by encouraging the process of angiogenesis.

View Article and Find Full Text PDF

Background And Purpose: Subarachnoid hemorrhage (SAH) pathophysiology involves neurovascular proteolysis and inflammation. How these 2 phenomena are related remains unclear. We hypothesize that matrix metalloproteinases (MMPs) mediate the depletion of anti-inflammatory plasma-type gelsolin (pGSN).

View Article and Find Full Text PDF