Apicomplexan infections, such as giardiasis and cryptosporidiosis, negatively impact a considerable proportion of human and commercial livestock populations. Despite this, the molecular mechanisms of disease, particularly the effect on the body beyond the gastrointestinal tract, are still poorly understood. To highlight host-parasite-microbiome biochemical interactions, we utilised integrated metabolomics-16S rRNA genomics and metabolomics-proteomics approaches in a C57BL/6J mouse model of giardiasis and compared these to and uropathogenic (UPEC) infections.
View Article and Find Full Text PDFControlling importation and transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from overseas travelers is essential for countries, such as Australia, New Zealand, and other island nations, that have adopted a suppression strategy to manage very low community transmission. Wastewater surveillance of SARS-CoV-2 RNA has emerged as a promising tool employed in public health response in many countries globally. This study aimed to establish whether the surveillance of aircraft wastewater can be used to provide an additional layer of information to augment individual clinical testing.
View Article and Find Full Text PDFCryptosporidiosis is a major human health concern globally. Despite well-established methods, misdiagnosis remains common. Our understanding of the cryptosporidiosis biochemical mechanism remains limited, compounding the difficulty of clinical diagnosis.
View Article and Find Full Text PDFRapid urban expansion and increased human activities have led to the progressive deterioration of many marine ecosystems. The diverse microbial communities that inhabit these ecosystems are believed to influence large-scale geochemical processes and, as such, analyzing their composition and functional metabolism can be a means to assessing an ecosystem's resilience to physical and chemical perturbations, or at the very least provide baseline information and insight into future research needs. Here we show the utilization of organic and inorganic contaminant screening coupled with metabolomics and bacterial 16S rRNA gene sequencing to assess the microbial community structure of marine sediments and their functional metabolic output.
View Article and Find Full Text PDF