Publications by authors named "Suzanne R Edwards"

The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated.

View Article and Find Full Text PDF

Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells.

View Article and Find Full Text PDF

Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp.

View Article and Find Full Text PDF

The chemical structure and composition of a retan agent, CNSF (condensation product of naphthalenesulfonic acid (NSA) and formaldehyde), and related components contained in tannery wastewaters were analyzed by ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IPC-HPLC/ESI-MS) in negative ion mode. This method allows high-resolution separation of polymers. CNSF contained linear NSA oligomers (n = 1-11) that were eluted in order of increasing degree of polymerization.

View Article and Find Full Text PDF