Insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF) act within the brain to enhance neuronal survival and plasticity. We extend these findings by showing that the presence of both neurotrophins is required to depress the rise in intracellular Ca2+ caused by glutamate in primary cultures of cerebrocortical neurons. IGF-I enhanced expression of BDNF receptors (Trk-B) and increased the ability of BDNF to induce ERK1/2 phosphorylation.
View Article and Find Full Text PDFThe stress kinase c-jun N-terminal kinase (JNK) was recently shown to be involved in the pathophysiology of major inflammatory conditions, including Alzheimer's disease, stroke, obesity, and type II diabetes. However, the role of JNK in regulating inflammatory events in skeletal muscle is only beginning to be explored. IGF-I is the major hormone that promotes muscle growth and development.
View Article and Find Full Text PDFMetabolic and cognitive alterations occur during hyperammonemia. Here, we report that chronic hyperammonemia also leads to increased sensitivity to LPS. Sparse-fur mice were challenged i.
View Article and Find Full Text PDFGH and IGF-I control over 80% of postnatal growth. We recently established that TNFalpha impairs the ability of IGF-I to increase protein synthesis and promote expression of myogenin in myoblasts. Here we extend these results by showing that ceramide, a second messenger in both TNFalpha and IL-1beta receptor signaling pathways, is a key downstream sphingosine-based lipid that leads to IGF-I resistance.
View Article and Find Full Text PDFProinflammatory cytokines are elevated in disorders characterized by muscle wasting and weakness, such as inflammatory myopathies and AIDS wasting. We recently demonstrated that TNF-alpha impairs the ability of insulin-like growth factor (IGF)-I to promote protein synthesis in muscle precursor cells. In this study we extend these findings by showing that low concentrations of IL-1beta impair IGF-I-dependent differentiation of myoblasts, as assessed by expression of the muscle specific protein, myosin heavy chain.
View Article and Find Full Text PDFCell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells.
View Article and Find Full Text PDFProinflammatory cytokines, such as TNFalpha and IL-1beta, are both cytostatic and cytotoxic. In contrast, IGF-I promotes proliferation and survival of hematopoietic progenitor cells. In this report, we establish that both the cytostatic and cytotoxic activity of TNFalpha on murine myeloid progenitor cells is only evident in the presence of IGF-I.
View Article and Find Full Text PDFCyclin A is required for cell cycle S phase entry, and its overexpression contributes to tumorigenesis. Release of pre-existing E2Fs from inactive complexes of E2F and hypophosphorylated retinoblastoma (RB) is the prevailing dogma for E2F transcriptional activation of target genes such as cyclin A. Here we explored the hypothesis that new synthesis of E2F-1 is required for insulin-like growth factor-I (IGF-I) to induce cyclin A accumulation and RB hyperphosphorylation, events that are targeted by tumor necrosis factor alpha (TNFalpha) to arrest cell cycle progression.
View Article and Find Full Text PDFTNFalpha is elevated following damage to skeletal muscle. Here we provide evidence that TNFalpha acts on muscle cells to induce a state of IGF-I receptor resistance. We establish that TNFalpha inhibits IGF-I-stimulated protein synthesis in primary porcine myoblasts.
View Article and Find Full Text PDFThe behavioral repertoire of humans and animals changes dramatically following infection. Sick individuals have little motivation to eat, are listless, complain of fatigue and malaise, loose interest in social activities and have significant changes in sleep patterns. They display an inability to experience pleasure, have exaggerated responses to pain and fail to concentrate.
View Article and Find Full Text PDFHormones, such as insulin-like growth factor-I (IGF-I), and cytokines, like IL-3 and IL-4, promote survival of progenitor myeloid cells. Here we demonstrate that IGF-I, IL-3 and IL-4 all significantly block activation of caspase-3 in promyeloid cells following growth factor deprivation. However, only IL-3 and IGF-I increase enzymatic activity and phosphorylation of the survival-promoting kinase Akt.
View Article and Find Full Text PDFNeutralization of endogenous growth factors and administration of exogenous bioactive cytokines are two distinct biological antitumor strategies that show promise for treatment of cancer patients. In this report, we provide evidence to link both strategies as an integrative approach to cancer therapy. We tested the hypothesis that proinflammatory cytokines block growth of transformed cells by inhibiting key intracellular signaling events after activation of the insulin-like growth factor-I (IGF-I) tyrosine kinase receptor.
View Article and Find Full Text PDFDeterioration of the thymus gland during aging is accompanied by a reduction in plasma GH. Here we report gross and microscopic results from 24-month-old Wistar-Furth rats treated with rat GH derived from syngeneic GH3 cells or with recombinant human GH. Histological evaluation of aged rats treated with either rat or human GH displayed clear morphologic evidence of thymic regeneration, reconstitution of hematopoietic cells in the bone marrow, and multiorgan extramedullary hematopoiesis.
View Article and Find Full Text PDFIL-10 is an anti-inflammatory cytokine that has recently been shown to promote survival of neurons and glia. Here we establish that IL-10 induces phosphorylation of Stat3 on Tyr(705) and serves as a survival factor for N13 microglial cells. Recombinant IL-10 (10 ng/ml) decreases growth factor withdrawal-induced apoptosis by 50%, as assessed by TUNEL.
View Article and Find Full Text PDF