Publications by authors named "Suzanne M Spong"

Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) plays an important role in fibrosis by modulating cell migration and cell growth but may also modify tumor growth and metastasis. Because CTGF is overexpressed in pancreatic ductal adenocarcinoma, we investigated the in vitro effects of CTGF on the proliferation and invasiveness of PANC-1 pancreatic cancer cells and examined the consequences of its in vivo inhibition on the growth and metastasis of these cells using a fully human CTGF-specific monoclonal antibody (FG-3019) in an orthotopic nude mouse model. Although PANC-1 cells expressed relatively high levels of endogenous CTGF mRNA, the addition of CTGF to conditioned medium increased the proliferation and invasiveness of PANC-1 cells.

View Article and Find Full Text PDF

Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner.

View Article and Find Full Text PDF