Feature extraction algorithms are an important class of unsupervised methods used to reduce data dimensionality. They have been applied extensively for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging─commonly, matrix factorization (MF) techniques such as principal component analysis have been used. A limitation of MF is the assumption of linearity, which is generally not accurate for ToF-SIMS data.
View Article and Find Full Text PDFPurpose: Pixantrone is a synthetic aza-anthracenedione currently used in the treatment of non-Hodgkin's lymphoma. The drug is firmly established as a poison of the nuclear enzyme topoisomerase II, however, pixantrone can also generate covalent drug-DNA adducts following activation by formaldehyde. While pixantrone-DNA adducts form proficiently in vitro, little evidence is presently at hand to indicate their existence within cells.
View Article and Find Full Text PDFNSG™ mice are highly immunocompromised thus demonstrate high efficiency engraftment of patient-derived xenografts (PDXs) for pre-clinical oncology research. It has previously been reported that NSG™ mice are hyper-sensitive to doxorubicin due to the impairment of DNA damage repair mechanisms. As such, doxorubicin causes a wide spectrum of toxicities including cardiotoxicity, hepatotoxicity and intestinal toxicity in NSG™ mice.
View Article and Find Full Text PDFCurrent techniques for the identification of DNA adduct-inducing and DNA interstrand crosslinking agents include electrophoretic crosslinking assays, electrophoretic gel shift assays, DNA and RNA stop assays, mass spectrometry-based methods and P-post-labelling. While these assays provide considerable insight into the site and stability of the interaction, they are relatively expensive, time-consuming and sometimes rely on the use of radioactively-labelled components, and thus are ill-suited to screening large numbers of compounds. A novel medium throughput assay was developed to overcome these limitations and was based on the attachment of a biotin-tagged double stranded (ds) oligonucleotide to Corning DNA-Bind plates.
View Article and Find Full Text PDFCancer patients treated with doxorubicin are at risk of congestive heart failure due to doxorubicin-mediated cardiotoxicity via topoisomerase IIβ poisoning. Acute cardiac muscle damage occurs in response to the very first dose of doxorubicin, however, cardioprotection has been reported after co-treatment of doxorubicin with acyloxyalkyl ester prodrugs. The aim of this study was to examine the role played by various forms of acute cardiac damage mediated by doxorubicin and determine a mechanism for the cardioprotective effect of formaldehyde-releasing prodrug AN-9 (pivaloyloxymethyl butyrate).
View Article and Find Full Text PDFThe application of artificial intelligence and machine learning to hyperspectral mass spectrometry imaging (MSI) data has received considerable attention over recent years. Various methodologies have shown great promise in their ability to handle the complexity and size of MSI data sets. Advances in this area have been particularly appealing for MSI of biological samples, which typically produce highly complicated data with often subtle relationships between features.
View Article and Find Full Text PDFBackground: Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear.
View Article and Find Full Text PDFWe present an optimization of the toroidal self-organizing map (SOM) algorithm for the accurate visualization of hyperspectral data. This represents a significant advancement on our previous work, in which we demonstrated the use of toroidal SOMs for the visualization of time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data. We have previously shown that the toroidal SOM can be used, unsupervised, to produce a multicolor similarity map of the analysis area, in which pixels with similar mass spectra are assigned a similar color.
View Article and Find Full Text PDFCombinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput comparison of material physical and chemical properties-such as surface chemistry and properties like cell attachment or protein adsorption-in order to identify correlations that can progress materials development. A challenge for this approach is to accurately discriminate between highly similar polymer chemistries or identify heterogeneities within individual polymer spots.
View Article and Find Full Text PDFMitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde.
View Article and Find Full Text PDFTime-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful surface characterization technique capable of producing high spatial resolution hyperspectral images, in which each pixel comprises an entire mass spectrum. Such images can provide insight into the chemical composition across a surface. However, issues arise due to the size and complexity of the data produced.
View Article and Find Full Text PDFMitoxantrone was efficiently encapsulated within cucurbit[8]uril in a 2:1 complex where the two mitoxantrone molecules were symmetrically located through both portals of a cucurbit[8]uril cage. The novel complex facilitates increased mitoxantrone uptake in mouse breast cancer cells and decreases the toxicity of the drug in healthy mice. In an orthotopic mouse model of metastatic breast cancer the complex still maintains anticancer activity compared to the free drug, yet provides a statistically significant increase in the survival of these mice compared to conventional mitoxantrone treatment.
View Article and Find Full Text PDFThe histone deacetylase (HDAC) inhibitory prodrugs of butyric (AN7) and valproic (AN446) acids, which release the active acids upon metabolic degradation, were studied examining their differential effects on the viability, HDAC inhibitory activity and the DNA damage response (DDR), in glioblastoma cell and normal human astrocytes (NHAs). In xenografts of glioblastoma, AN7 or AN446 given or the combination of each of them with Dox augmented the anticancer activity of Dox and protected the heart from its toxicity. In order to determine the processes underlying these opposing effects, the changes induced by these treatments on the epigenetic landscape, the DDR, and fibrosis were compared in tumors and hearts of glioblastoma xenografts.
View Article and Find Full Text PDFThe major covalent adduct formed between a C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CGCGCG) has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G residue, with the polycyclic ring structure intercalated at the CpG/GpC site. Furthermore, the WEHI-150 aromatic ring system is oriented approximately parallel to the long axis of the base pairs, with one aliphatic side-chain in the major groove and the other side-chain in the minor groove.
View Article and Find Full Text PDFThe ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2.
View Article and Find Full Text PDFDevelopment of parameters for the fabrication of nanosized vectors is pivotal for its successful administration in therapeutic applications. In this study, homogeneously distributed chitosan nanoparticles (CNPs) with diameters as small as 62 nm and a polydispersity index (PDI) of 0.15 were synthesized and purified using a simple, robust method that was highly reproducible.
View Article and Find Full Text PDFMitoxantrone is a synthetic anthracenedione originally developed to improve the therapeutic profile of the anthracyclines and is commonly applied in the treatment of breast and prostate cancers, lymphomas, and leukemias. A comprehensive overview of the drug's molecular, biochemical, and cellular pharmacology is presented here, beginning with the cardiotoxic nature of its predecessor doxorubicin and how these properties shaped the pharmacology of mitoxantrone itself. Although mitoxantrone is firmly established as a DNA topoisomerase II poison within mammalian cells, it is now clear that the drug interacts with a much broader range of biological macromolecules both covalently and noncovalently.
View Article and Find Full Text PDFThe binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites.
View Article and Find Full Text PDFChemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells.
View Article and Find Full Text PDFDoxorubicin has been in use as a key anticancer drug for forty years, either as a single agent or in combination chemotherapy. It functions primarily by interfering with topoisomerase II activity but in the presence of formaldehyde, it forms adducts with DNA, mainly with the exocyclic amine of guanine at GpC sites and these adducts are more cytotoxic than topoisomerase II induced damage. High levels of adducts form spontaneously from the endogenous level of formaldehyde in tumour cells (1,300 adducts per cell after a 4 hr treatment with doxorubicin), but substantially higher levels form with the addition of exogenous sources of formaldehyde, such as formaldehyde releasing prodrugs.
View Article and Find Full Text PDFA novel derivative of the anti-tumor agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) was prepared by reduction of 9-oxoacridan-4-carboxylic acid to acridine-4-carboxylic acid with subsequent conversion to N-(4-aminobutyl)acridine-4-carboxamide (C4-DACA). Molecular modeling studies suggested that a DACA analogue comprising a side chain length of four carbons was optimal to form formaldehyde-mediated drug-DNA adducts via the minor groove. An in vitro transcription assay revealed that formaldehyde-mediated C4-DACA-DNA adducts selectively formed at CpG and CpA dinucleotide sequences, which is strikingly similar to that of formaldehyde-activated anthracenediones such as pixantrone.
View Article and Find Full Text PDFThe poor survival of patients with malignant gliomas, underscores the need to develop effective treatment modalities for this devastating disease. Epigenetic agents used in combination with chemotherapy provide a promising approach to evoke synergistic cytotoxicity in glioblastomas. Previously we have described the cytotoxic synergy between a butyric acid prodrug and radiation in glioblastoma cell lines and the potentiation of radiation efficacy in glioma xenografts.
View Article and Find Full Text PDFEpirubicin was developed as a semi-synthetic anthracycline derivative to circumvent the cardiotoxic limitations associated with the use of doxorubicin in the clinic. Anthracycline compounds have been demonstrated to form covalent drug-DNA adducts utilising endogenous and exogenous sources of formaldehyde; however, previous investigations of the formation of epirubicin-DNA adducts provide conflicting evidence for adduct formation. This work provides evidence that epirubicin acts to form drug-DNA adducts at physiologically relevant concentrations and demonstrates that the rate of formation of epirubicin-DNA adducts is slower than that observed for other anthracycline compounds, explaining why they are only detectable under defined experimental conditions.
View Article and Find Full Text PDFThe cytotoxicity of doxorubicin, a clinically used anti-neoplastic drug, can be enhanced by formaldehyde (either endogenous or exogenous) to promote the formation of doxorubicin-DNA adducts. Formaldehyde supplies the carbon required for the covalent linkage of doxorubicin to one strand of DNA, with hydrogen bonds stabilising the doxorubicin mono-adduct to the other strand of DNA, to act much like an interstrand crosslink. Interstrand crosslinks present a major challenge for cellular repair processes, requiring the activation of numerous DNA damage response proteins for resolution of the resulting DNA intermediates and damage.
View Article and Find Full Text PDFThe histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity.
View Article and Find Full Text PDF