Publications by authors named "Suzanne L Robertson"

When initially introduced into a susceptible population, a disease may die out or result in a major outbreak. We present a Continuous-Time Markov Chain model for enzootic WNV transmission between two avian host species and a single vector, and use multitype branching process theory to determine the probability of disease extinction based upon the type of infected individual initially introducing the disease into the population - an exposed vector, infectious vector, or infectious host of either species. We explore how the likelihood of disease extinction depends on the ability of each host species to transmit WNV, vector biting rates on host species, and the relative abundance of host species, as well as vector abundance.

View Article and Find Full Text PDF

Throughout the vector-borne disease modeling literature, there exist two general frameworks for incorporating vector management strategies (e.g. area-wide adulticide spraying and larval source reduction campaigns) into vector population models, namely, the "implicit" and "explicit" control frameworks.

View Article and Find Full Text PDF

Hurricanes have profound impacts on zoonotic pathogen ecosystems that exhibit spatial and temporal waves in both distance from and time since the event. Wind, rain, and storm surge directly affect mosquito vectors and animal hosts of these pathogens. In this analysis, we apply a West Nile virus transmission model parameterized for the Northern coast of the Gulf of Mexico to explore the effect of event timing of hurricane landfall, time since the event, and damage extent on human West Nile virus neuro-invasive disease (WNV-NID) risk.

View Article and Find Full Text PDF

Management strategies for control of vector-borne diseases, for example Zika or dengue, include using larvicide and/or adulticide, either through large-scale application by truck or plane or through door-to-door efforts that require obtaining permission to access private property and spray yards. The efficacy of the latter strategy is highly dependent on the compliance of local residents. Here we develop a model for vector-borne disease transmission between mosquitoes and humans in a neighborhood setting, considering a network of houses connected via nearest-neighbor mosquito movement.

View Article and Find Full Text PDF

Background: Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed.

Methods: strain 70-15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source.

View Article and Find Full Text PDF

Though seasonal West Nile virus (WNV) outbreaks have been widely observed to be associated with the end of the avian nesting season, specific ecological mechanisms accounting for this synchronicity remain poorly understood. In this paper we develop and evaluate a novel mathematical model of enzootic WNV transmission to gain insight into the mechanisms responsible for structuring WNV dynamics. We incorporate avian (host) stage-structure (nestling, fledgling, and adult) and within-species heterogeneity in the form of stage-specific mosquito (vector) biting rates.

View Article and Find Full Text PDF

Waterborne diseases such as cholera continue to pose serious public health problems in the world today. Transmission parameters can vary greatly with socioeconomic class (SEC) and the availability of clean water. We formulate a multi-patch waterborne disease model such that each patch represents a particular SEC with its own water source, allowing individuals to move between SECs.

View Article and Find Full Text PDF

Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera.

View Article and Find Full Text PDF

Cholera and many waterborne diseases exhibit multiple characteristic timescales or pathways of infection, which can be modeled as direct and indirect transmission. A major public health issue for waterborne diseases involves understanding the modes of transmission in order to improve control and prevention strategies. An important epidemiological question is: given data for an outbreak, can we determine the role and relative importance of direct vs.

View Article and Find Full Text PDF

In many stage-structured species, different life stages often occupy separate spatial niches in a heterogeneous environment. Life stages of the giant flour beetle Tribolium brevicornis (Leconte), in particular adults and pupae, occupy different locations in a homogeneous habitat. This unique spatial pattern does not occur in the well-studied stored grain pests T.

View Article and Find Full Text PDF