In each influenza season, a distinct group of young, otherwise healthy individuals with no risk factors succumbs to life-threatening infection. To better understand the cause for this, we analyzed a broad range of immune responses in blood from a unique cohort of patients, comprising previously healthy individuals hospitalized with and without respiratory failure during one influenza season, and infected with one specific influenza A strain. This analysis was compared with similarly hospitalized influenza patients with known risk factors (total of = 60 patients recruited).
View Article and Find Full Text PDFClin Sci (Lond)
February 2017
Influenza A viruses (IAVs) cause respiratory illness of varying severity based on the virus strains, host predisposition and pre-existing immunity. Ultimately, outcome and recovery from infection rely on an effective immune response comprising both innate and adaptive components. The innate immune response provides the first line of defence and is crucial to the outcome of infection.
View Article and Find Full Text PDFBackground: A major gap in the management of sarcoidosis is the lack of accessible and objective methods to measure disease activity. Since 90% of patients have pulmonary involvement, we explored if a disease activity score based on thoracic CT scans could address this clinical issue.
Methods: High-resolution CT scans from 100 consecutive patients with sarcoidosis at a regional sarcoidosis service were scored for extent of CT abnormalities known to relate to granuloma or lymphocytic infiltration from published CT-pathological studies.
4-1BB is expressed on invariant (i)NKT cells, but its role is unclear. We showed previously that iNKT cells are involved in control of monocyte numbers during influenza A virus (IAV) infection and now question the role of the 4-1BB costimulatory pathway in the cross-talk between these cells. We found that iNKT cells and monocytes interact to promote expression of 4-1BB and 4-1BBL, respectively.
View Article and Find Full Text PDFNeuropathology in multiple sclerosis is closely linked to presence of macrophages in the CNS. Both M1 (inflammatory) and M2 (alternatively activated, noninflammatory) macrophages are found in the inflamed CNS and thought to differentiate from infiltrating monocytes. It is unclear whether the balance of M1 and M2 macrophages can be altered and whether this affects disease outcome.
View Article and Find Full Text PDF