Publications by authors named "Suzanne J House"

Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR).

View Article and Find Full Text PDF

Objective: The purpose of this study was to test the function of the calcium/calmodulin-dependent protein kinase II delta2 isoform (CaMKIIdelta2) in regulating vascular smooth muscle (VSM) cell proliferation and migration in response to vascular injury.

Methods And Results: CaMKII isoform content was assessed in rat carotid arteries after balloon angioplasty-induced injury by Western blotting with isoform specific antibodies. Within 3 days after injury, a significant increase in CaMKIIdelta2 and decrease in CaMKIIgamma isoform content was observed in both medial smooth muscle and adventitial fibroblasts.

View Article and Find Full Text PDF

There is accumulating evidence that Ca(2+)-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca(2+) signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKIIgamma gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKIIdelta(2), a splice variant of the delta gene.

View Article and Find Full Text PDF