Publications by authors named "Suzanne Giasson"

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization.

View Article and Find Full Text PDF

Nanoparticles or drug carriers which can selectively bind to cells expressing receptors above a certain threshold surface density are very promising for targeting cells overexpressing specific receptors under pathological conditions. Simulations and theoretical studies have suggested that such selectivity can be enhanced by functionalizing nanoparticles with a bimodal polymer monolayer (BM) containing shorter ligated chains and longer inert protective chains. However, a systematic study of the effect of these parameters under tightly controlled conditions is still missing.

View Article and Find Full Text PDF

Dual-responsive poly-(-isopropylacrylamide) (PNIPAM) microgels surface-functionalized with polyethylene glycol (PEG) or poly-2-dimethylaminoethyl methacrylate (PDMAEMA) were developed to enable the swelling behavior and surface properties of the microgels to be tuned independently. The thermo-triggered swelling and pH-triggered surface properties of the microgels were investigated in aqueous suspensions using dynamic light scattering and on substrates using the surface forces apparatus. Grafting polymer chains on the microgel surface did not impede the thermo-triggered swelling behavior of the microgels in suspensions and immobilized on substrates.

View Article and Find Full Text PDF

We describe how a long-range repulsive interaction can surreptitiously modify the effective geometry of approaching compliant surfaces, with significant consequences on friction. We investigated the behavior under shear and compression of mica surfaces coated with poly(-isopropylacrylamide) pNIPAM-based cationic microgels. We show that local surface deformations as small as a few nanometers must be considered to understand the response of such surfaces under compression and shear, in particular when the range of action of normal and friction forces are significantly different, as is often the case for macromolecular lubrication.

View Article and Find Full Text PDF

The tribological properties of two novel biomimetic multihierarchical polymers, synthesized by covalently linking single bottlebrush polymers onto a hyaluronic acid (HA) backbone, were investigated in the boundary lubrication regime using the surface forces apparatus. The polymers were immobilized on flat substrates, and their lubrication properties and wear resistance were investigated in aqueous media in the absence of a polymer reservoir (i.e.

View Article and Find Full Text PDF

In this work, we have investigated the behavior under shear and compression of mica surfaces coated with poly(-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication. By implementing a feedback-loop control on the surface separation, we were able to quantify the magnitude of the lift force as a function of the surface separation and driving speed.

View Article and Find Full Text PDF

Normal and friction forces between immobilized two-dimensional (2D) homogeneous non-close-packed colloidal arrays made of different particles are compared in aqueous media. Soft pH-responsive (microgels) and nonresponsive hard (silica) particles of different sizes were used to create the 2D arrays. The results show that the friction of soft responsive structured layers can be successfully modulated by varying the pH, with a friction coefficient varying by nearly 3 orders of magnitude (10 to 1).

View Article and Find Full Text PDF

As double stranded, single stranded siRNA (ss-siRNA) has demonstrated gene silencing activity but still requires efficient carriers to reach its cytoplasmic target. To better understand the fundamental aspect driving the complexation of ss-siRNA with nanocarriers, the interactions between surfaces of various compositions across a ss-siRNA solution were investigated using the Surface Forces Apparatus. The results show that ss-siRNA can adsorb onto hydrophilic (positively and negatively charged) as well as on hydrophobic substrates suggesting that the complexation can occur through hydrophobic interactions and hydrogen bonding in addition to electrostatic interactions.

View Article and Find Full Text PDF

A biofunctionalized graphene oxide (GO) nanosheet with improved physicochemical properties is useful for electrocatalysis and sensor development. Herein, a new class of functionalized GO with a chemically anchored biomolecule glucosamine is developed. Structural and chemical analyses confirm the glucosamine anchoring.

View Article and Find Full Text PDF

Hybrid nanoparticles (NPs) integrated with dye molecules have attracted interest for biomolecular detection, due to their effortless fabrication, timely operation, controllable specific recognition and low-cost. In this study, hybrid core-shell NPs made of a metal-dye complex (AgNPs@[Ru(bpy)]) core and a chitosan (CS) shell exhibiting a selective fluorescence quenching effect were successfully prepared using a cost-effective wet-chemical approach. The physico-chemical properties of NPs were determined by spectroscopy and light scattering measurements.

View Article and Find Full Text PDF

We have studied the adsorption and lubricant properties of a multifunctional triblock copolymer poly(L-lysine)-b-poly(acrylic acid)-b-poly(L-lysine). In particular, we investigated the nature of the layer adsorbed under different conditions of polymer and salt concentration and the lubricant properties of the polymer layer before and after its chemical cross-linking by bridging the poly(acrylic acid) blocks. We found that the amount of polymer adsorbed is controlled by the ionic strength and the polymer concentration in the solution.

View Article and Find Full Text PDF

Static and dynamic interaction forces between two thermosensitive polymeric nanoparticle monolayers grafted onto mica surfaces and immersed in water were studied using a surface forces apparatus. The polymeric nanoparticles (NPs) were made of N,N-diethylacrylamide and had a hydrodynamic diameter of ca. 780 nm at 20 degrees C in aqueous suspension.

View Article and Find Full Text PDF

The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces.

View Article and Find Full Text PDF

New active particulate polymeric vectors based on branched polyester copolymers of hydroxy-acid and allyl glycidyl ether were developed to target drugs to the inflammatory endothelial cell surface. The hydroxyl and carboxyl derivatives of these polymers allow grafting of ligand molecules on the polyester backbones at different densities. A known potent nonselective selectin ligand was selected and synthesized using a new scheme.

View Article and Find Full Text PDF

Normal and lateral forces between two opposing monolayers of grafted polymer nanoparticles (NPs) were measured using the Surface Forces Apparatus in a humid atmosphere. The NPs made of N, N-diethylacrylamide and 2-hydroxyethyl methacrylate have a hydrodynamic diameter of ca. 660 nm at 25 degrees C.

View Article and Find Full Text PDF

Normal and shear forces were measured as a function of surface separation, D, between hydrophobized mica surfaces bearing layers of a hydrophobic-polyelectrolytic diblock copolymer, poly(methyl methacrylate)- block-poly(sodium sulfonated glycidyl methacrylate) copolymer (PMMA- b-PSGMA). The copolymers were attached to each hydrophobized surface by their hydrophobic PMMA moieties with the nonadsorbing polyelectrolytic PSGMA tails extending into the aqueous medium to form a polyelectrolyte brush. Following overnight incubation in 10 (-4) w/v aqueous solution of the copolymer, the strong hydrophobic attraction between the hydrophobized mica surfaces across water was replaced by strongly repulsive normal forces between them.

View Article and Find Full Text PDF

We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces.

View Article and Find Full Text PDF

Polyelectrolyte brushes were built on mica by anchoring polystyrene-poly(acrylic acid) (PS-b-PAA) diblock copolymers at a controlled surface density in a polystyrene monolayer covalently attached to OH-activated mica surfaces. Compared to physisorbed polymer brushes, these irreversibly attached charged brushes allow the polymer grafting density to remain constant upon changes in environmental conditions (e.g.

View Article and Find Full Text PDF

Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface.

View Article and Find Full Text PDF

Dissipative particle dynamics (DPD) was used to investigate the behavior of two opposing end-grafted charged polymer brushes in aqueous media under normal compression and lateral shear. The effect of polymer molecular weight, degree of ionization, grafting density, ionic strength, and compression on the polymer conformation and the resulting shear force between the opposing polymer layers were investigated. The simulations were carried out for the poly(tert-butyl methacrylate)-block-poly(sodium sulfonate glycidyl methacrylate) copolymer, referred as PtBMA-b-PGMAS, end-attached to a hydrophobic surface for comparison with previous experimental data.

View Article and Find Full Text PDF

Homogeneous polystyrene monolayers covalently end-attached on mica and silica surfaces were obtained using a "graft to" methodology. The grafting was achieved via nucleophilic substitution between silanol groups (Si-OH) containing surface and monochlorosilyl terminated polystyrene (PS). Different parameters, such as surface activation, grafting reaction time, polymer concentration, nature of solvent, and presence of catalyst, were investigated to determine the optimal conditions for creating very homogeneous and stable polymer monolayers.

View Article and Find Full Text PDF

The purpose of this study was to develop oil-in-water emulsions (100-120 nm in diameter) and to correlate the surface properties of the emulsions with blood residence time and accumulation into neoplastic tissues by passive targeting. We investigated the effect of phospholipid and sphingolipid emulsifiers, hydrogenated soybean phosphatidylcholine (HSPC) and egg sphingomyelin (ESM), in combination with polysorbate 80 (PS-80) and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)-PEG lipids of various PEG chain lengths and structures in prolonging circulation time and enhancing accumulation into B16 melanoma or C26 colon adenocarcinoma. The relationship between amphiphile molecular packing at the air/water interface on emulsion stability upon dilution in albumin and circulation longevity in vivo was also explored for non-PEGylated emulsions.

View Article and Find Full Text PDF

The behavior of three copolymers of N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and hydrophobic moiety was studied at phospholipid monolayer/subphase interfaces. The hydrophobic moieties, N-terminal dioctadecylamine (DODA) and random octadecylacrylate (ODA), were used as anchoring groups. The interactions between a 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) monolayer and the copolymers were studied using the Langmuir balance technique.

View Article and Find Full Text PDF

Molecular interactions between a terminally alkylated pH-sensitive N-isopropylacrylamide copolymer DODA-poly(NIPAM-co-MAA) and a monolayer of distearoylphosphatidylcholine (DSPC) at the air/water interface are investigated using the Langmuir balance technique. The compression isotherms ofthe copolymer monolayer at the air-water interface confirm that the copolymer undergoes a structural transition with a change in pH ranging from an extended coil state at neutral pH to a collapsed globular state at a pH corresponding to the pH of the polymer phase transition. Adsorption kinetics of DODA-poly(NIPAM-co-MAA) in the DSPC monolayer is analyzed using a first-order kinetics model allowing an effective interaction area Ax between DSPC and DODA-poly(NIPAM-co-MAA) molecules to be evaluated.

View Article and Find Full Text PDF