Publications by authors named "Suzanne Freilich"

Article Synopsis
  • The Linearbandkeramik (LBK) Neolithic communities were pioneers in spreading agriculture across Europe and this study showcases genetic data from 250 individuals to understand their ancestry.
  • The findings reveal a notable difference in ancestry, with eastern LBK sites having a higher percentage of western hunter-gatherer genetics compared to western sites, indicating separate genetic paths for these groups.
  • Additionally, the research suggests a patrilocal social structure, featuring more genetic connections among males within sites, and points out that the massacre at Asparn-Schletz likely involved individuals from a large population rather than a small community.
View Article and Find Full Text PDF

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P.

View Article and Find Full Text PDF

Over the past decade, genomic data have contributed to several insights on global human population histories. These studies have been met both with interest and critically, particularly by populations with oral histories that are records of their past and often reference their origins. While several studies have reported concordance between oral and genetic histories, there is potential for tension that may stem from genetic histories being prioritized or used to confirm community-based knowledge and ethnography, especially if they differ.

View Article and Find Full Text PDF

By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations.

View Article and Find Full Text PDF

We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.

View Article and Find Full Text PDF

Literary and archaeological sources have preserved a rich history of Southern Europe and West Asia since the Bronze Age that can be complemented by genetics. Mycenaean period elites in Greece did not differ from the general population and included both people with some steppe ancestry and others, like the Griffin Warrior, without it. Similarly, people in the central area of the Urartian Kingdom around Lake Van lacked the steppe ancestry characteristic of the kingdom's northern provinces.

View Article and Find Full Text PDF

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold.

View Article and Find Full Text PDF

Ancient DNA studies have revealed how human migrations from the Neolithic to the Bronze Age transformed the social and genetic structure of European societies. Present-day Croatia lies at the heart of ancient migration routes through Europe, yet our knowledge about social and genetic processes here remains sparse. To shed light on these questions, we report new whole-genome data for 28 individuals dated to between ~ 4700 BCE-400 CE from two sites in present-day eastern Croatia.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the deep population history of East Asia, utilizing ancient DNA from 166 individuals to explore migration patterns and ancestry connections over millennia.
  • It identifies a significant coastal migration during the Late Pleistocene and notes expansions in the Holocene from regions like Mongolia, the Amur River Basin, and the Yellow River, affecting language distributions and genetic ancestry.
  • The findings suggest complex interactions involving different lineages, including shared ancestry among Mongolic and Tungusic speakers, a major genetic contribution to the Han Chinese from Yellow River farmers, and a mix of northern and southern ancestries in Taiwan.
View Article and Find Full Text PDF

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work, we find no support for ancestry contributed by a population related to North American individuals.

View Article and Find Full Text PDF

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population.

View Article and Find Full Text PDF