J Am Ceram Soc
January 2020
We report on a recent workshop dedicated to additive manufacturing (AM) of ceramics that was held at the National Institute of Standards and Technology (NIST) in November 2019. This two-day all-invited meeting brought together experts from industry, government agencies and academia to review the state of the field and identify the most pressing applied materials research and metrology issues which, if addressed, could accelerate the incorporation of AM methods into commercial ceramic manufacturing. Besides the AM technologies, the discussions included consideration of the necessary post-processing steps.
View Article and Find Full Text PDFTwo formamidinate bridged dirhodium(ii,ii) complexes with chelating diimine ligands L, [Rh(μ-DTolF)(L)], were shown to electrocatalytically reduce CO in the presence of HO. Analysis of the reaction mixture and headspace following bulk electrolysis revealed H and HCOOH as the major products. The variation in relative product formation is discussed.
View Article and Find Full Text PDFFormamidinate-bridged Rh2(II,II) complexes containing diimine ligands of the formula cis-[Rh2(II,II)(μ-DTolF)2(NN)2](2+) (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H(+) to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a Rh(III,II/II,II) reduction at -0.90 V vs Fc(+)/Fc followed by NN(0/-) reduction at -1.
View Article and Find Full Text PDF