Eutrophication is a global environmental challenge, and diverse watershed nitrogen sources require multifaceted management approaches. Shellfish aquaculture removes nitrogen, but the extent and value of this ecosystem service have not been well-characterized at the local scale. A novel approach was employed to quantify and value nitrogen reduction services provided by the shellfish aquaculture industry to a municipality.
View Article and Find Full Text PDFEutrophication is a challenge to coastal waters around the globe. In many places, nutrient reductions from land-based sources have not been sufficient to achieve desired water quality improvements. Bivalve shellfish have shown promise as an in-water strategy to complement land-based nutrient management.
View Article and Find Full Text PDFLand-based management has reduced nutrient discharges; however, many coastal waterbodies remain impaired. Oyster "bioextraction" of nutrients and how oyster aquaculture might complement existing management measures in urban estuaries was examined in Long Island Sound, Connecticut. Eutrophication status, nutrient removal, and ecosystem service values were estimated using eutrophication, circulation, local- and ecosystem-scale models, and an avoided-costs valuation.
View Article and Find Full Text PDFThe use of shellfish aquaculture for nutrient removal and reduction of coastal eutrophication has been proposed. Published literature has indicated that nitrogen contained in harvested shellfish can be accurately estimated from shell length:nitrogen content ratios. The range of nitrogen that could be removed by a typical farm in a specific estuarine or coastal setting is also of interest to regulators and planners.
View Article and Find Full Text PDFExcess nutrients in the coastal environment have been linked to a host of environmental problems, and nitrogen reduction efforts have been a top priority of resource managers for decades. The use of shellfish for coastal nitrogen remediation has been proposed, but formal incorporation into nitrogen management programs is lagging. Including shellfish aquaculture in existing nitrogen management programs makes sense from environmental, economic, and social perspectives, but challenges must be overcome for large-scale implementation to be possible.
View Article and Find Full Text PDFIn recent years, several sets of legislation worldwide (Oceans Act in USA, Australia or Canada; Water Framework Directive or Marine Strategy in Europe, National Water Act in South Africa, etc.) have been developed in order to address ecological quality or integrity, within estuarine and coastal systems. Most such legislation seeks to define quality in an integrative way, by using several biological elements, together with physico-chemical and pollution elements.
View Article and Find Full Text PDFThe Assessment of Estuarine Trophic Status (ASSETS) screening model has been extended to allow its application to both estuarine and coastal systems. The model, which combines elements of pressure, state and response, was tested on four systems: Maryland Coastal Bays and Long Island Sound in the United States and The Firth of Clyde (Scotland) and Tagus Estuary (Portugal) in the European Union. The overall scores were: Maryland Coastal Bays: Bad; Firth of Clyde: Poor; Tagus Estuary: Good.
View Article and Find Full Text PDF